,
ExaScience Lab
Intel Labs Europe

THE SNIPER MULTI-CORE SIMULATOR

09:00
09:30
10:00
10:30
11:00
11:30
12:00

UN%TEIT < i n te ll:

INTRODUCTION

INTERVAL SIMULATION

— COFFEE BREAK —

SIMULATOR INTERNALS

VALIDATION RESULTS

RUNNING SIMULATIONS AND PROCESSING RESULTS
— END —

HTTP://WWW.SNIPERSIM.ORG
SUNDAY, APRIL 1s, 2012
ISPASS, NEwW BRUNSWICK, NJ

WHO WE ARE

Wim Heirman

Trevor E. Carlson

« wim.heirman@elis.ugent.be e trevor.carlson@elis.ugent.be
* Post-doctoral researcher at the Intel * Ph.D. student at Ghent University and
ExaScience Lab part of the Intel ExaScience Lab
e MS and PhD degrees from BSand MS degrees from Carnegie
Ghent University in 2003 and 2008 Mellon University in 2002 and 2003
* Interests * Most recently worked as a researcher
— Fast and accurate simulation at IMEC where he investigated
— Architecture exploration and software efficient embedded and 3D-stacked
analysis through co-design architectures
— Energy efficient HPC o

Previously a Staff Engineer at IBM
with 4 issued patents

INTEL EXASCIENCE LAB

* Collaboration between Intel, imec
and 5 Flemish universities

e Study Space Weather as an HPC workload

| J= J=
O A K

y ¢ U

Architectural Simulation |:> [

r
ExaScience Lab
Intel Labs Europe

THE SNIPER MULTI-CORE SIMULATOR
INTRODUCTION

WiM HEIRMAN, TREVOR E. CARLSON
AND LIEVEN EECKHOUT

HTTP://WWW.SNIPERSIM.ORG

UNIVERSITEIT (lntel) SUNDAY, APRIL 15, 2012
GENT

ISPASS, NEw BRUNSWICK, NJ

_ -
TRENDS IN PROCESSOR DESIGN: CACHE

e Cache sizes are increasing

LLC Cache Sizes
60
]
50
40
8
230 &
s
"y | (3
20
o TS /0/
) ® e o
® .
. O, 2 *
Jan-93 Oct-95 Jul-98 Apr-01 Jan-04 Oct-06 Jul-09 Apr-12 Dec-14

M|PF ¢x86

| A
TRENDS IN PROCESSOR DESIGN: CORES

* Number of cores per node is increasing
— 2001: Dual-core POWER4
— 2005: Dual-core AMD Opteron
— 2011: 10-core Intel Xeon Westmere-EX
— 201x: Intel MIC Knights Corner (50+ cores)

SIMULATION

* Design tomorrow’s processor using today’s
hardware

 Simulation

— Obtain performance characteristics for new
architectures

— Architectural exploration

— Early software optimization

~ A
DEMANDS ON SIMULATION ARENCREASING

* Increasing core counts
— Linear increase in simulator workload
— Single-threaded simulator sees a rising gap

» workload: increasing target cores

* available processing power: near-constant single-
thread performance of host machine

— Need to use all cores of the host machine

—> Parallel simulation

&
4
DEMANDS ON SIMULATION ARENCREASING

* |Increasing cache size

— Need a large working set to fully exercise a large
cache

— Scaled-down applications won’t exhibit the same
behavior

— Long-running simulations are required

UPCOMING CHALLENGES

e Future systems will be diverse

— Varying processor speeds
— Varying failure rates for different components

— Homogeneous applications become heterogeneous

e Software and hardware solutions are needed to
solve these challenges

— Handle heterogeneity (reactive load balancing)
— Be fault tolerant

— Improve power efficiency at the algorithmic level
(extreme data locality)

 Hard to model accurately with analytical models

10

A

NEEDED DETAIL DEPENDS ON‘FOCUS

Single-event Required

Component . . L.
P time scale sim time
RTL single clock cycle millions of cycles Too SIOW
00O execution
cycle-accurate
models
Core memory ops Eerl
core
L1 cache access model
simple core
models
LLC access
M v Not ;
Off-socket microseconds seconds Ot accurate

enough

INTERVAL SIMULATION

e QOut-of-order core performance model
with in-order simulation speed

branch misprediction

o A I-cache miss long-latency load miss
©

x

Q

)

©

o

k%)

©

Q

>

)

(@)

Q

=

v < = = >

interval 1 interval 2 interval 3 time

D. Genbrugge et al., HPCA’10
S. Eyerman et al., ACM TOCS, May 2009
T. Karkhanis and J. E. Smith, ISCA’04, ISCA’0712

CYCLE STACKS

* Where did my cycles go?

* CPI stack: cycles per instruction,
broken up in components

* Normalize by either

— Number of instructions (CPI stack)
— Execution time (time stack)

* Different from miss rates as

cycle stacks directly quantify
the effect on performance

CPI

B L2 cache
[] I-cache
I Branch

B Base

13

A

CYCLE STACKS AND SCALING BEHAVIOR

* Scaling to more cores, larger input set size

* How does execution time scale, and why?

Percent of time

100%

80% | - -

60% | - -

40% | - -

20% | - -

0%

Rodinia -

8c 8c
large small

SRAD

16¢C 16¢C
large small

B sync-barrier
[sync-crit_sect
BN mem-dram
B mem-off _socket
= mem-I3

1 mem-I2_neighbor
B mem-I12

T mem-I1_neighbor
BN mem-l1d

— ifetch

EE branch

1 depend-fp
B depend-int
1 dispatch_width

14

a_ A
A
FAST AND ACCURATE SIMULATION IS NEEDED

* Sniper Simulator
— Interval core model
— Accurate structures (caches, branch predictors, etc.)

— Parallel simulator scales with the number of
simulated cores

* Key Questions
— What is the right level of abstraction? >>I
— When to use these abstraction models? sniper

15

A

A

MANY ARCHITECTURE OPTIONS

16

SIMULATION IN SNIPER

A single-process,

Execution-driven simulation multithreaded

Workload (v1.06) functional

simulator

(Pin)
memory hierarchy {‘ >

simulator <7>

branch predictor < - B
simulator pr— .
processor cores — .
Multiple, - .
Trace-driven simulation single-threaded

Workloads (v2.0)

17

TOP SNIPER FEATURES

* |nterval Model

e CPI Stacks

* Parallel Multithreaded Simulator

 Based on Graphite infrastructure

* x86-64 and SSE2 support

* Validated against Core2, Nehalem

e Full DVFS support

* Shared and private caches

 Modern branch predictor

e Supports pthreads and OpenMP, TBB and OpenCL
* SimAPI and Python interfaces to the simulator

* Many flavors of Linux supported (Redhat, Ubuntu, etc.)

18

SIMULATOR COMPARISON"

—mmm

Integrated
Func-directed X X X X
User-level X X
Full-system X X X
Archs Supported x64 x64 x64 x64 x64
Alpha
SPARC
Parallel (in-node) X X

Shared caches X X X X

19

SNIPER LIMITATIONS

User-level

— Perfect for HPC

— Not the best match for workloads with significant OS
involvement

Functional-directed
— No simulation / cache accesses along false paths

High-abstraction core model
— Not suited to model all effects of core-level changes
— Perfect for memory subsystem or NoC work

Xx86-64 only

20

—
ExaScience Lab
Intel Labs Europe

THE SNIPER MULTI-CORE SIMULATOR
INTERVAL SIMULATION

TREVOR E. CARLSON, WIM HEIRMAN
AND LIEVEN EECKHOUT

HTTP://WWW.SNIPERSIM.ORG

m -) SUNDAY, APRIL 15, 2012
UNIE/;EEIF\IS_}TEIT (lnte I,

ISPASS, NEwW BRUNSWICK, NJ

OVERVIEW

* Simulation Methodologies
— Trace, Integrated, Functional-directed

e Core Models
— One-IPC

— Interval

* Interval Model and Simulation Detail
 CPI-Stacks

22

v - -

SIMULATION METHODOLOGIES

Trace-based Simulation
— No wrong-path instructions nor timing-influenced results
— Not the best for multithreaded applications

Functional-First Simulation
— The timing model controls wrong-path execution via checkpoints
— Can be difficult to build

Integrated Simulation

— Timing and functional simulation are closely tied together
— Timing of the core drives when instructions are fetched and executed

Functional-Directed Simulation

— Mispredicted path instructions are not taken into account
* Rolling-back /check-pointing is therefore not needed

— Timing model tends to be separate from the functional model

23

A

NEEDED DETAIL DEPENDS ON‘FOCUS

Single-event Required

Component . . L.
P time scale sim time
RTL single clock cycle millions of cycles Too SIOW
00O execution
cycle-accurate
models
Core memory ops Eerl
core
L1 cache access model
simple core
models
LLC access
M v Not ;
Off-socket microseconds seconds Ot accurate

enough

e

ONE-IPC MODELING — Too SIMPLE?

* Simple high-abstraction model
e Qur definition of a One-IPC core model

— Scalar, in-order issue

— Account for non-unit instruction exec latencies
— Perfect branch prediction

— L1 D-cache hits are completely hidden

— All other cache accesses incur penalty

25

A

ONE-IPC CORE MODEL

* Alternative for memory access traces
— Aims to provide more-realistic access patterns
— Allows for timing feedback

 Nevertheless, One-IPC core models do not
exhibit MLP

— Therefore, request rates are not as accurate as
cycle-level simulators

26

INTERVAL MODEL

e QOut-of-order core performance model with
in-order simulation speed

branch misprediction

o A I-cache miss long-latency load miss
©

x

Q

)

©

o

k%)

©

Q

>

)

(@)

Q

=

v < = = >

interval 1 interval 2 interval 3 time

D. Genbrugge et al., HPCA’10
S. Eyerman et al., ACM TOCS, May 2009
T. Karkhanis and J. E. Smith, ISCA’04, ISCA’0727

DETAILED MODEL VS. INTERVAL.SIM

15

BP

DRAM

Cache Hlierarchy

R

=)

Decode

)

Queu

Issuee;@>

LSQ

Execution
Units

=)

Commit

|

Interval

Simulation

ROB

%

Functional
Simulator

28

KEY BENEFITS OF THE INTERVAL MODEL

* Models superscalar OO0 execution
* Models impact of ILP

e Models second-order effects: MLP

* Allows for constructing CPI stacks

29

b

MULTI-CORE INTERVAL SIMUEATION

memory hierarchy
simulator

(=

branch predictor
simulator

-
_-
—"
4"
_
_-
-
=

functional
simulator

Processor cores

next instruction to dispatch

!

old window

window

|

|
\head

| — |

tailj \head taiI}

Y
dispatched instructions upcoming instructions

Y

30

CORE-LEVEL TIMING :

NO MISS EVENTS
dispatcAh N ops

old window [window

| I
head tail head tail

Instantaneous dispatch rate is determined by the
longest critical path in the old window:

Instantaneous dispatch rate =min (W /L, D)
Little’s law
Assumes a balanced architecture
L = longest critical path length in cycles

W = instructions in the old window (max = ROB length)
D = maximum dispatch rate (processor width) 31

LONG BACK-END MISS EVENTS
ISOLATED LONG-LATENCY LOAD

load resolution

time c,
memory access time
3 N y Yy .
= Ok X >
58 ¢
IPC 4 32 & @ |
L ¢y 7T = <« window full s
e o
W/D
/ : |
< >< > time
base penalty

S. Eyerman et al., ACM TOCS, May 2009

32

LONG BACK-END MISS EVENTS
OVERLAPPING LONG-LATENCY LOADS

— N
2 8 — «
EE 38 0
©
23 EE
O (@) T T .
— = T memory access time
5 6 2= 5.S/D .
T ® 8 Y &y load miss 2
A 22 28 . —> /returns
IPC 5, o, 22 : load miss 1 |
4 window full —
< > P returns —
S/D S/D v
S new instrs can
be dispatched
: >
¢ ¢ > time
base | penalty

S. Eyerman et al., ACM TOCS, May 2009

33

CORE-LEVEL TIMING ‘
LONG-LATENCY LOAD

old window

!

h|ead tail head I tail

If long-latency load (LLC miss):
core sim time += miss latency

AND walk the window to issue independent miss
events: these are hidden under the long-latency load
— second-order effects

AND empty old window

34

|-CACHE MISS ‘
(L1, L2, TLB)

|-cache miss
occurs miss delay
< A >
¢ ey
front-end
IPC

v drain

front-end
re-fill

L
\

time

N

NS

base penalty

S. Eyerman et al., ACM TOCS, May 2009

35

A

CORE-LEVEL TIMING: |-CACHE/TLB

old window window

core i ‘ E

! r 11

h|ead tclail W

If I-cache or I-TLB miss:
core sim time += miss latency
AND empty old window

5

BRANCH MISPREDICTION

mispredicted

branch : :
branch : mispredicted
mispredicted dlsp?tched branch
front-end branch executed
drain ”resolution time
IPC ¢ N N

____1

front-end
re-fill

ra
A

[
time

P N A
AY 7N 7

base penalty

S. Eyerman et al., ACM TOCS, May 2009

37

e

CORE-LEVEL TIMING: BRANCH MISPREDICT

old window window

core i ‘ E

! r 11

h|ead tclail W tclail

If branch misprediction:

core sim time += branch resolution time
+ front-end pipeline depth

AND empty old window

A

CORE-LEVEL TIMING: BRANCH MISPREDICT

core i old window ﬁ i window
}tzlail head tail
head

Branch resolution time = longest critical path in
‘old window’ leading to the branch

39

-

CORE-LEVEL TIMING: SERIALIZING INSN

old window window

core i ‘ E

! r 11

h|ead tldil W tlail

If serializing instruction:
core sim time += window drain time
window drain time=max (W /D, L)
AND empty the old window

CYCLE STACKS T
CPI

* Where did my cycles go?
e CPI stack

— Cycles per instruction
— Broken up in components

* Normalize by either
— Number of instructions (CPI stack)
— Execution time (time stack)

* Different from miss rates: B L2 cache
cycle stacks directly quantify E cache

the effect on performance B sase

41

CONSTRUCTING CPI STACKS - T

* Interval simulation:
track why time is advanced
— No miss events

* |ssue instructions at base CPI
* Increment base component

— Miss event
e Fast-forward time by X cycles

* Increment component by X B L2 cache

[] I-cache
I Branch
B Base

42

B

CYCLE STACKS FOR PARALLEL APPLICATIONS

By thread: heterogeneous behavior

in @ homogeneous application?
SPLASH-2 - FFT

o,
100% BN sync-barrier

[/ sync-crit_sect
B mem-dram
B mem-off _socket
EEE mem-I3
/1 mem-I12_neighbor
B mem-|2
E== mem-I1_neighbor
B mem-l1d
— ifetch
40% B branch
1 depend-fp
B depend-int
T dispatch_width

80%

60%

Percent of time

20%

o 1 2 3 4 5 6 7

Thread number

0%

43

, b
USING CYCLE STACKS TO EXPLAIN SCALING
BEHAVIOR
Rodinia - SRAD
100%

sync-barrier
sync-crit_sect
mem-dram
mem-off _socket
mem-I3
mem-12_neighbor
mem-12
mem-I1_neighbor
mem-l1d

ifetch

branch

1 depend-fp
B depend-int
1 dispatch_width

80% | -

60% |

40%

Percent of time

20% | -

0%

8¢ 8¢ 16c 16¢C
large small large small 44

" o
USING CYCLE STACKS TO EXPEAIN SCALING
BEHAVIOR

e Scale input: application becomes DRAM bound

Rodinia - SRAD

100% .
sync-barrier

sync-crit_sect
mem-dram
mem-off _socket
mem-I3
mem-12_neighbor
mem-12
mem-I1_neighbor
mem-l1d
ifetch
branch
1 depend-fp
B depend-int
1 dispatch_width

80% | -

60% | -

40% | -

Percent of time

20% | -

0%

8¢ 8¢ 16c 16¢C
large small large small 45

" A
USING CYCLE STACKS TO EXPEAIN SCALING
BEHAVIOR

e Scale input: application becomes DRAM bound
e Scale core count: sync losses increase to 20%

Rodinia - SRAD

0,
100% sync-barrier

sync-crit_sect

mem-dram

80% [- mem-off socket
. mem-I3
= mem-|2_neighbor
= 60% | - mem-|I2
° mem-I1_neighbor
= mem-11d
% 40% | — - ifetch
o branch

1 depend-fp
B depend-int
1 dispatch_width

20% | -

0%
8c 8c 16¢C 16¢C

large small large small 46

—
ExaScience Lab
Intel Labs Europe

THE SNIPER MULTI-CORE SIMULATOR
SIMULATOR INTERNALS

WiM HEIRMAN, TREVOR E. CARLSON
AND LIEVEN EECKHOUT

HTTP://WWW.SNIPERSIM.ORG

UNIVERSITEIT lntel) SUNDAY, APRIL 1+, 2012
GENT L_/

ISPASS, NEw BRUNSWICK, NJ

OVERVIEW

 Parallel simulation with relaxed
synchronization

— Flexible synchronization schemes between cores

— Trade off causality errors for simulation speed
* Parallelism inside Sniper
 Hardware components

48

RELAXED SYNCHRONIZATION

* Graphite introduced relaxed synchronization with
a number of different synchronization schemes

— none: only synchronizes when the application does;
for pthread calls, etc.

— random-pairs: synchronizes random pairs of threads

— barrier: synchronizes all threads at a given simulated
time interval
* Sniper defaults to barrier synchronization
with 100ns intervals

— Multi-machine mode not supported, so tight
synchronization is easier

49

-

BARRIER SYNCHRONIZATION [N ACTION

simulated time

A

barrier
pthread cond_signal
pthread_cond_wait
““““““““““ barrier
barrier

real time

50

PARALLELISM INSIDE SNIPER

e Each simulated core is run inside its own thread

— Includes functional simulation, timing models for core
and cache

— Each core model maintains its own local time

e Extra threads for network and DRAM models

— Can process invalidation requests without interrupting
the core model

* Each thread is allowed to independently make
progress
— Causality errors can occur, no rollback
— Skew is limited to 100ns

51

{ o ~ e A
THREADS IN SNIPER a4

application threads network threads

52

L <& S v -
TIME IN SNIPER .

 Each memory access instantly returns latency
* Application threads maintain time
* Network threads reset time for each request

core core t=30 ‘0 t=4 core core

L11/D Q& L11/D t=29 L | t=1 L11/D L11/D &
L2 L2 t=28 L. t=5 Wi Wi

I — I
t=27 t=10) t=22 3

E

'I '- 1B
t=15 t=26 NI t=24 0

T

t=20

53

MODELING CONTENTION

* Events may happen out of order
* How to model bandwidth / contention?

— History list
* Resource in use at times 0...10, 12...17, 25...30

* Access at 15: delay =2
* Access at 8, length 5: ?

e Causality errors are possible
— Effect is limited, as long as average bandwidth is OK
— Allows for faster simulation, easier implementation
— Speed versus accuracy trade-off

54

e

CONFIGURABLE COMPONENTS

 Hardware options
— Branch predictors
— Cache hierarchies

* Core options

— Core models: interval, one-IPC, Graphite legacy
— DVFS

e Networks

55

BRANCH PREDICTOR

* Pentium-M-style branch predictor

Current Instruction

IP address

Path Information Register
(PIR)

14 0 l

14

Hash Access

.

»| Function (HASH)

V. Uzelac, ISPASS’09

Offset = IP [3:0]
Index = IP [12:4]

Tag =P [21:13]

Index = IP [9:4]
Tag = 1P [15:10]

15 bits
Branch target buffer (BTB) Indirect target cache (iBTB)
BTB hit 0 - -
J l I P Ta Target _'B»TB "
»[Tag | Type | Offset[Target | PLRU EIB type Index = HASH [13:6] " | (7 bft’s) (32 %it)
(9 bits) [(2-3 bits) | (4 bits) | (32 bits)| (3 bits) Tag = HASH [14,5:0]
BTB target
waya| > 255
511 Way 0
Global predictor
Loo;i branch predictor buffer (LPB) Loop 0 [
—» outcome
P Tag (6 bits) | 2bC
° prediction index = HASH[12.6] L2g (6 bits) |
»| Tag | Count | Limit |Prediction . Tag = HASHI[5:0]
(6 bits)| (6 bits) | (6 bits)] (1bit) | LPB hit Way 3
ay
Way 0 BTB hit 511 L
63] Global Global
Bimodal Table . outcome predictor hit
0 Bimodal Loop prediction
outcome prediction predictor hit Outcome prediction

Index = IP[11:0]

»| 2bC

Loop

4095

outcome prediction —»|

|

i

A

-

PARAMETRIC SHARED CACHE-HIERARCHY

,
ExaScience Lab
Intel Labs Europe

THE SNIPER MULTI-CORE SIMULATOR
SIMULATOR ACCURACY
AND HARDWARE VALIDATION

TREVOR E. CARLSON, WIM HEIRMAN
AND LIEVEN EECKHOUT

HTTP://WWW.SNIPERSIM.ORG

UNIVERSITEIT (lntel] SUNDAY, APRIL 1+, 2012
GENT

ISPASS, NEw BRUNSWICK, NJ

EXPERIMENTAL SETUP

e Benchmarks

— Complete SPLASH-2 suite
* 1to 16 threads
* Linux pthreads API

— Extensive use of microbenchmarks to tune
parameters and track down problems

e Hardware
— Four-socket Intel Xeon X7460 machine
— Core2 (45nm, Penryn) with 6 cores/socket

59

A

-

EXPERIMENTAL SETUP: ARCHITECTURE

A

HINTS FOR COMPARING TO HARDWARE

* Threads are pinned to their own core
pthread setaffinity np()

* Steepstep is disabled

echo performance > /sys/devices/system/cpu/*/cpufreq/
scaling governor

 Turbo mode, Hyperthreading disabled
— BIOS setting

* Use hardware performance counters

— But can be difficult to interpret
— Overlapping cache misses (HW) vs. hits (Sniper)

61

Execution time (s)

| g %
INTERVAL PROVIDES NEEDED-ACCURACY

fft

g -

O—*NW&U‘I

A

el

hardware interval nelPC iocoom

simple magic

1_1 21) 41 | § w16

2

raytrace

A

on time (s)

The interval core model
provides consistent accuracy
of 25% avg. abs. error,

with a minimal slowdown

MHMHH

i

hardware interval onelPC iocoom simple

] 2 1 1 4 1

magic

] 8 mmmm {6

62

GooD OVERALL ACCURAGY

A

INTERVAL

ds ioem

bsu-iaiem

| puaijon

aoellfel

XIpeJ

Aysoipe.

16 cores

Juooun|

Juoon|

L Wwj

juodu'ueado

interval =———1

onelPC =71

e

Aysa|oyo

sauleq

(arempiey 0] anne|al)
3w} uolNoax3

—
—
i
1

| Juod'uUEeado

|
—
-
o
™ o

Good accuracy for the

entire benchmark suite

63

b

INTERVAL: BETTER RELATIVE ACCURACY

* Application scalability is affected by memory bandwidth

* Interval model provides more realistic memory request
streams, which results in a more accurate scaling prediction

barnes water.nsq

16

Speedup
Speedup

Cores Cores

onelPC —+— hardware ---*--- onelPC —+— hardware ---*---
interval ---x--- interval ---x---

64

APPLICATION OPTIMIZATION

* Splash2-Raytrace shows very bad scaling behavior
* CPI stack shows why: heavy lock contention
* Conversion to use locked increment instruction helps

15.9
14
\
16 | \
",.El y [) [R—— & ..
LK & 7
Q 8 B '% 1.0 [R BRI oo [l LA
: g E :00:00:
8 4 | § 0.8 |- R KSOH. e R PO
2 2
[}
0.6 | LRI RO +ovvveeeven - LK GG - KKK A -+
(7)) 2 . g
0.4 [PSR DR v [S5 POCK
1F)
| | | | | 02 N A T P
1 2 4 8 16 00
1 16 1 16
hardware —— base base opt opt
interval ---x--- RRRRRRA [)r;:rnn(;ll? SN sync-mute
- ync-mutex
hardware opt X EXX= depend EZZ2 mem-dram
interval-opt & 1 issue ES<Y mem-remote

65

Simulation speed (MIPS)

SIMULATOR

‘ 5 e A

| -
PERFORMANCE

Sniper currently scales to 2 MIPS t

fmm

/

2

pa——

Lok

Iz

ar

A

interval onelPC

Simulation speed (MIPS)

10 203 4 &5

Typical simulators run at
10s-100s KIPS, without scaling

0
/ interval onelPC

4 =5 8= 16 ==

66

A

SYNCHRONIZATION VARIABILITY

Execution time variability

150%
|
c Fo
D JOOYo [S R
£ ; | .
> , !
E 50% .. ".’/.>.<..\.\...‘.‘ ;.;.gﬁx.\.
© X ¥-- —-)K‘ ',// N ‘.‘ 7 -
2 ~ '\‘x‘ ’, X‘\ L \‘
x - X\~ R L - ~ \\I ///ii‘ %”_-
0% ; - H——
- - - —
8 € g @ 2 © & © o © E ¢ = 7
e = et o (&) o (&) @ (&) w“ &) © :
= § 55 S § 3 o ¢ S I3
> c -
— T g = S O = ©
Q O =
O o
o
barrier —+— random-pairs ---x--- none ------

Variability due to relaxed
synchronization is application specific

67

Simulation time (h)

A

R

FLEXIBILITY TO CHOOSE NEEDED FIDELITY

fft

+.
v
\

interval-barrier
interval-no-branch

* interval-r?ndom-pairs

l"rintervahna-icaghg B

+ Interval-none

———+-anelPC-barrier
i S T onelPC- tandom: pair
\ -~ . L T RhelPC-norje
\ ~
0 50 100 150 200 250~ -~ \300 350
Error (%) e -
-~
~
] fft [zoomed] ~ o .
=3 *;}gterva_lfba_rrier
o “+nterval-no-branch. .
5 N -+ interval-random-pairs
= N "+ interval-none
3 ~
E N
n % interval-no-icache
-5 0 5 10 15 20 25 30
Error (%)

68

Simulation speed (MIPS)

MANY-CORE SIMULATIONS

High simulation speed up to 1000 simulated cores
— Pin limitation (to be lifted shortly) at 1020 cores
— Efficient simulation: L1-based benchmarks execute faster
— Host system: dual-socket Xeon X5660 (6-core Westmere), 96 GB RAM

10 1e+07
s
I 1e+06 F /
=
_ k)
1 \ih o 100000 } M
RS -
kS
2 10000
=
01 1 L L 1 1 1 1 1000 1 1 1 1 1 1 1
16 32 64 128 256 512 1000 16 32 64 128 256 512 1000
Simulated cores Simulated cores
heat-1 —— fft heat-1 —— fft
heat-5 —»— indep —+— heat-5 —»— indep —+—
heat-9 —»— fft-noicache heat-9 —»— fft-noicache

heat-5-noic —&— heat-5-noic —&— 69

,
ExaScience Lab
Intel Labs Europe

THE SNIPER MULTI-CORE SIMULATOR
RUNNING SIMULATIONS
AND PROCESSING RESULTS

WiM HEIRMAN, TREVOR E. CARLSON
AND LIEVEN EECKHOUT

HTTP://WWW.SNIPERSIM.ORG

UNIVERSITEIT (lntel] SUNDAY, APRIL 1+, 2012
GENT

ISPASS, NEw BRUNSWICK, NJ

OVERVIEW

Obtain and compile Sniper
Running

Configuration

Simulation results

Interacting with the simulation
— SimAPI: application
— Python scripting

71

RUNNING SNIPER

 Download Sniper

— http://snipersim.org/w/Download
* Download tar.gz

* Git clone
~/sniper$ export GRAPHITE ROOT=$%(pwd)
~/sniper$ make

* Running an application

~/sniper$./run-sniper -- /bin/true
~/sniper/test/fft$ make run

72

RUNNING SNIPER

* |Integrated benchmarks distribution

— http://snipersim.org/w/Download Benchmarks

~/benchmarks$ export BENCHMARKS ROOT=$%(pwd)

~/benchmarks$ make

~/benchmarks$./run-sniper -p splash2-fft \
-i small -n 4

e Standardizes input sets and command lines
* Includes SPLASH-2, PARSEC

73

| A
INTEGRATION WITH BENCHMARKS

* To add a new benchmark
— Add source code
— Add _init__.py file
* Provides application invocation details
* Define input sets (e.g.: test, small, large)

— Mark the ROI region
— Simple example: see local/pi

74

-

MULTI-PROGRAMMED WORKLEOADS

e Recording traces (SIFT format)
$./record-trace -o fft -- test/fft/fft -pl

* Limited trace, by instruction count:
Fast-forward (-f), detailed length (-d), block size (-b)
$./record-trace -o fft -f 1e9 -d 1e9 -b 1le8 \
-- test/fft/fft -pl -m20

* Running traces
$./run-sniper -c gainestown -n 4 \
--traces=gcc.sift,swim.sift,\
swim.sift,equake.sift

75

REGION OF INTEREST

e Skip benchmark initialization and cleanup

* Mark code with ROl begin / end markers

— SimRoiStart() / SimRoiEnd() in your own
application

—$./run-sniper --roi -- test/fft/fft

* Already done in benchmarks distribution
— benchmarks/run-sniper implies --roi
— Use --no-roi to override

* Cache warming during pre-ROI period
— Use --no-cache-warming to override

76

CONFIGURATION

« Stackable configuration files (run-sniper -c)
and explicit command-line options (-g)
— Template configurations in sniper/config/*.cfg (-c name)
— Your own local configuration files (-c filename.cfg)
— Explicit option: -g --section/key=value
* Multiple configuration files, and -g options, can be combined
— Config files specified later on the command line take precedence
— config/base.cfg is always included
— If no -c option is provided, config/gainestown.cfg is the default

(quad-core Nehalem-based Xeon)

 Complete configuration is stored in sim.cfg after each run

77

CONFIGURATION

 Example configuration: largecache.cfg

[perf model/13 cache]
cache size = 16384 # KB

$ run-sniper -c gainestown -c largecache.cfg

* Equivalent to:

$ run-sniper -c gainestown \
-g --perfmodel/13 cache/cache size=16384

78

SIMULATION RESULTS

* Files created after each simulation:

— sim.cfg: all configuration options used for this run
(includes defaults, all -c and -g options)

— sim.out: basic statistics (number of cycles, instructions
per core, cache access and miss rates, ...)

— sim.stats: complete set of all recorded statistics at key
points in the simulation (start, roi-begin, roi-end, stop)

e Use the graphite lib Python package for parsing

79

SIMULATION RESULTS

graphite lib.get results() parses sim.cfg, sim.stats
and returns configuration and statistics
(roi-end — roi-begin) for all cores

~/sniper/tools$ python

> import graphite 1lib

> results = graphite lib.get results(resultsdir = “..”)

> print results

{‘config’: {‘general/total cores’: ‘64,
‘perf_model/core/frequency’: 2.66°, ..},

‘results’: {‘performance_model.instruction count’:[123],
‘performance_model.elapsed time’: [23000000], ..}}

80

SIMULATION RESULTS

e Let’s compute the IPC for core O

e Core frequency is variable (DVFS)
so cycle count has to be computed
— Time is in femtoseconds, frequency in GHz

> instrs = results[‘results’]
[‘performance _model.instruction count’][9]

> cycles = results[‘results’]
[‘performance _model.elapsed time’][9]

* float(results[‘config’][‘perf _model/core/frequency’])
* le-6 # femtoseconds -> nanoseconds

> ipc = instrs / cycles

2.0

81

SIMULATION RESULTS

e CPI stacks (user of graphite_lib)
$./tools/cpistack.py [--time|--cpi|--abstime]

CPI CPI % Time %
Core @ SPLASH-2 - FFT
depend-int 0.20 23.42% 23.42% 100% BN sync-barrier
depend-fp 0.16 18.94% 18.94% — sync-crit_sect
branch 0.12 14.04% 14.04% B mem-dram
ifetch 0.04 4.16% 4.16% 80% mEmmm mem-off_socket
mem-11d 0.21 24.41% 24.41% B mem-I3
mem-13 0.02 2.72% 2.72% E—— mem-I2_neighbor
mem-dram 0.05 5.73% 5.73% E 60% — xmﬁ idhbor
sync-mutex 0.02 2.59% 2.59% % _':' Ceomiig
sync-cond 0.03 3.01% 3.01% ¢ == ifetch
other 0.01 0.97% 0.97% g 40% B branch
o /1 depend-fp
total 0.84 100.00% 0.00s | dfapend-int .
Core 1 20% [/ dispatch_width

depend-int 0.20 23.92% 23.92% ----....
depend-fp 0.16 18.79% 18.79%
branch 0.12 13.72% 13.72% 0%
mem-11d 0.20 24.06% 24.06% 0 1 > 3 4 5 6 7
mem-13 0.06 6.79% 6.79%
sync-mutex 0.04 5.22% 5.22% Thread number
sync-cond 0.05 5.60% 5.60%
other 0.02 1.89% 1.89%
total 0.85 100.00% 0.00s

82

< \ i
- :
INTERACTING WITH SNIPER

input/
binary cmdline configuration

application

SImAPI

<€

Python
scripts
Sniper simulator

statistics

|

cpi-stacks

83

SIMAPI IMPLEMENTATION

 Magic instructions allow the application to talk to
the simulator directly

__asm___ volatile (
"xchg %%bx, %%bx\n"
"=a" (_res) /* output */
: "a" (_cmd),
"b" (_argo9),
"c¢" (_argl) /* input */
); /* clobbered */

* Pin intercepts this instruction and passes control
to the simulator

e Command and arguments passed through
rax/rbx/rcx registers, result in rax

84

APPLICATION SIMAPI

e Calling simulator API functions from your C program
#include <sim_api.h>

— SimInSimulator()
* Return 1 when running inside Sniper, 0 when running natively

— SimGetProcld()

e Return processor number of caller
— SimRoiStart() / SimRoiEnd()

 Start/end detailed mode (when using ./run-sniper --roi)
— SimSetFreqMHz(proc, mhz) / SimGetFreqMHz(proc)

» Set / get processor frequency (integer, in MHz)

— SimUser(cmd, arg)
* User-defined function .

PYTHON SCRIPTING

Scripts are run on simulator startup

— Register hooks: callbacks when certain events
happen during the simulation

— See common/system/hooks_manager.h for all
available hooks

Use an existing script from sniper/scripts/*.py:

./run-sniper -s scriptname

Or your own script:
./run-sniper -s myscriptname.py

Use sim package for convenience wrappers

86

PYTHON SCRIPTING

* Low-level script
e Execute “foo” at each barrier synchronization

import sim_hooks
def foo(t):

print ‘The time 1is now’, t
sim_hooks.register(sim _hooks.HOOK PERIODIC, fo0o0)

87

PYTHON SCRIPTING

* Higher-level script
e Execute “foo” at each barrier synchronization

import sim
class Class:
def hook periodic(self, t):
print ‘The time 1is now’, t
sim.util.register(Class())

88

PYTHON SCRIPTING

* High-level script: execute “foo” every X ms
* Passin parameter using
./run-sniper -s myscript.py:X

import sim
class Class:
def setup(self, args):
sim.util.Every(long(args)*sim.util.Time.MS,
self.periodic)
def periodic(self, t, t delta):
print ‘The time is now’, t
print ‘Elapsed time since last call’, t delta
sim.util.register(Class())

89

PYTHON SCRIPTING

* Access configuration, statistics, DVFS

* Live periodic IPC trace:
— See scripts/ipctrace.py for a more complete example

class IPCTracer:

def setup(self, args):
sim.util.Every(1*sim.util.Time.US, self.periodic)
self.instrs prev = 0

def periodic(self, t, t delta):
freq = sim.dvfs.get frequency(9)
cycles = t delta * freq * 1le-9 # fs * MHz -> cycles
instrs = long(sim.stats.get(‘performance_model’, 0,

‘instruction_count’))

print ‘IPC =’, (instrs - self.instrs _prev) / cycles
self.instrs _prev = instrs

90

b

PYTHON & MAGIC INSTRUCTIONS

* Communicate information between application
and Python script
— E.g.: simulated hardware performance counters

* Application:

uint64_t ninstrs = SimUtil(@xdeadbeef, SimGetProcId())

e Python script:
class PerfCtr:
def setup(self):
sim.util.register_ command(@xdeadbeef, self.compute)
def compute(self, arg):
return sim.stats.get(‘performance_model’, arg,

“instruction_count’)
91

NEAR TERM IDEAS

Multiple processes

— A number of multi-threaded applications
— MPI support

Heterogeneous cores at run-time

— Big: 4-issue processor

— Small: 2-issue processor

Scheduling/Migration support

Multiple processor configurations

— Currently the simulator is compiled to support a single
type of processor (Core2 vs. Nehalem vs. Sandy Bridge)

92

REFERENCES

Sniper website

— http://snipersim.org/

Download

— http://snipersim.org/w/Download

— http://snipersim.org/w/Download Benchmarks
Getting started

— http://snipersim.org/w/Getting Started
Questions?

— http://groups.google.com/group/snipersim

— http://snipersim.org/w/Frequently Asked Questions

93

