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Wim Heirman

Trevor E. Carlson
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ExaScience Lab part of the Intel ExaScience Lab
e MS and PhD degrees from  BSand MS degrees from Carnegie
Ghent University in 2003 and 2008 Mellon University in 2002 and 2003
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— Fast and accurate simulation at IMEC where he investigated
— Architecture exploration and software efficient embedded and 3D-stacked
analysis through co-design architectures
— Energy efficient HPC o

Previously a Staff Engineer at IBM
with 4 issued patents



INTEL EXASCIENCE LAB

* Collaboration between Intel, imec
and 5 Flemish universities

e Study Space Weather as an HPC workload
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TRENDS IN PROCESSOR DESIGN: CACHE

e Cache sizes are increasing
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TRENDS IN PROCESSOR DESIGN: CORES

* Number of cores per node is increasing
— 2001: Dual-core POWER4
— 2005: Dual-core AMD Opteron
— 2011: 10-core Intel Xeon Westmere-EX
— 201x: Intel MIC Knights Corner (50+ cores)



SIMULATION

* Design tomorrow’s processor using today’s
hardware

 Simulation

— Obtain performance characteristics for new
architectures

— Architectural exploration

— Early software optimization
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DEMANDS ON SIMULATION ARENCREASING

* Increasing core counts
— Linear increase in simulator workload
— Single-threaded simulator sees a rising gap

» workload: increasing target cores

* available processing power: near-constant single-
thread performance of host machine

— Need to use all cores of the host machine

—> Parallel simulation
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DEMANDS ON SIMULATION ARENCREASING

* |Increasing cache size

— Need a large working set to fully exercise a large
cache

— Scaled-down applications won’t exhibit the same
behavior

— Long-running simulations are required



UPCOMING CHALLENGES

e Future systems will be diverse

— Varying processor speeds
— Varying failure rates for different components

— Homogeneous applications become heterogeneous

e Software and hardware solutions are needed to
solve these challenges

— Handle heterogeneity (reactive load balancing)
— Be fault tolerant

— Improve power efficiency at the algorithmic level
(extreme data locality)

 Hard to model accurately with analytical models

10
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NEEDED DETAIL DEPENDS ON‘FOCUS

Single-event Required

Component . . L.
P time scale sim time
RTL single clock cycle millions of cycles Too SIOW
00O execution
cycle-accurate
models
Core memory ops Eerl
core
L1 cache access model
simple core
models
LLC access
M v Not ;
Off-socket microseconds seconds Ot accurate

enough




INTERVAL SIMULATION

e QOut-of-order core performance model
with in-order simulation speed

branch misprediction

o A I-cache miss long-latency load miss
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D. Genbrugge et al., HPCA’10
S. Eyerman et al., ACM TOCS, May 2009
T. Karkhanis and J. E. Smith, ISCA’04, ISCA’0712



CYCLE STACKS

* Where did my cycles go?

* CPI stack: cycles per instruction,
broken up in components

* Normalize by either

— Number of instructions (CPI stack)
— Execution time (time stack)

* Different from miss rates as

cycle stacks directly quantify
the effect on performance

CPI

B L2 cache
[ ] I-cache
I Branch

B Base

13
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CYCLE STACKS AND SCALING BEHAVIOR

* Scaling to more cores, larger input set size

* How does execution time scale, and why?

Percent of time

100%

80% | - -

60% | - -

40% | - -

20% | - -

0%

Rodinia -

8c 8c
large small

SRAD

16¢C 16¢C
large small

B sync-barrier
[ sync-crit_sect
BN mem-dram
B mem-off _socket
= mem-I3

1 mem-I2_neighbor
B mem-I12

T mem-I1_neighbor
BN mem-l1d

— ifetch

EE branch

1 depend-fp
B depend-int
1 dispatch_width
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A
FAST AND ACCURATE SIMULATION IS NEEDED

* Sniper Simulator
— Interval core model
— Accurate structures (caches, branch predictors, etc.)

— Parallel simulator scales with the number of
simulated cores

* Key Questions
— What is the right level of abstraction? >>I
— When to use these abstraction models? sniper

15
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MANY ARCHITECTURE OPTIONS

16



SIMULATION IN SNIPER

A single-process,

Execution-driven simulation multithreaded

Workload (v1.06) functional

simulator

(Pin)
memory hierarchy {‘ >

simulator <7>

branch predictor < - B
simulator pr— .
processor cores — .
Multiple, - .
Trace-driven simulation single-threaded

Workloads (v2.0)

17



TOP SNIPER FEATURES

* |nterval Model

e CPI Stacks

* Parallel Multithreaded Simulator

 Based on Graphite infrastructure

* x86-64 and SSE2 support

* Validated against Core2, Nehalem

e Full DVFS support

* Shared and private caches

 Modern branch predictor

e Supports pthreads and OpenMP, TBB and OpenCL
* SimAPI and Python interfaces to the simulator

* Many flavors of Linux supported (Redhat, Ubuntu, etc.)

18



SIMULATOR COMPARISON"

—mmm

Integrated
Func-directed X X X X
User-level X X
Full-system X X X
Archs Supported x64 x64 x64 x64 x64
Alpha
SPARC
Parallel (in-node) X X

Shared caches X X X X

19



SNIPER LIMITATIONS

User-level

— Perfect for HPC

— Not the best match for workloads with significant OS
involvement

Functional-directed
— No simulation / cache accesses along false paths

High-abstraction core model
— Not suited to model all effects of core-level changes
— Perfect for memory subsystem or NoC work

Xx86-64 only

20
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OVERVIEW

* Simulation Methodologies
— Trace, Integrated, Functional-directed

e Core Models
— One-IPC

— Interval

* Interval Model and Simulation Detail
 CPI-Stacks

22



v - -

SIMULATION METHODOLOGIES

Trace-based Simulation
— No wrong-path instructions nor timing-influenced results
— Not the best for multithreaded applications

Functional-First Simulation
— The timing model controls wrong-path execution via checkpoints
— Can be difficult to build

Integrated Simulation

— Timing and functional simulation are closely tied together
— Timing of the core drives when instructions are fetched and executed

Functional-Directed Simulation

— Mispredicted path instructions are not taken into account
* Rolling-back /check-pointing is therefore not needed

— Timing model tends to be separate from the functional model

23
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NEEDED DETAIL DEPENDS ON‘FOCUS

Single-event Required

Component . . L.
P time scale sim time
RTL single clock cycle millions of cycles Too SIOW
00O execution
cycle-accurate
models
Core memory ops Eerl
core
L1 cache access model
simple core
models
LLC access
M v Not ;
Off-socket microseconds seconds Ot accurate

enough
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ONE-IPC MODELING — Too SIMPLE?

* Simple high-abstraction model
e Qur definition of a One-IPC core model

— Scalar, in-order issue

— Account for non-unit instruction exec latencies
— Perfect branch prediction

— L1 D-cache hits are completely hidden

— All other cache accesses incur penalty

25
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ONE-IPC CORE MODEL

* Alternative for memory access traces
— Aims to provide more-realistic access patterns
— Allows for timing feedback

 Nevertheless, One-IPC core models do not
exhibit MLP

— Therefore, request rates are not as accurate as
cycle-level simulators

26



INTERVAL MODEL

e QOut-of-order core performance model with
in-order simulation speed

branch misprediction

o A I-cache miss long-latency load miss
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DETAILED MODEL VS. INTERVAL.SIM

15
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KEY BENEFITS OF THE INTERVAL MODEL

* Models superscalar OO0 execution
* Models impact of ILP

e Models second-order effects: MLP

* Allows for constructing CPI stacks

29
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MULTI-CORE INTERVAL SIMUEATION

memory hierarchy
simulator

(=

branch predictor
simulator

-
_-
—"
4"
_
_-
-
=

functional
simulator

Processor cores

next instruction to dispatch

!

old window

window

|

|
\head

| — |

tailj \head taiI}

Y
dispatched instructions upcoming instructions

Y
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CORE-LEVEL TIMING :

NO MISS EVENTS
dispatcAh N ops

old window [ window

| I
head tail  head tail

Instantaneous dispatch rate is determined by the
longest critical path in the old window:

Instantaneous dispatch rate =min (W /L, D)
Little’s law
Assumes a balanced architecture
L = longest critical path length in cycles

W = instructions in the old window (max = ROB length)
D = maximum dispatch rate (processor width) 31



LONG BACK-END MISS EVENTS
ISOLATED LONG-LATENCY LOAD

load resolution

time c,
memory access time
3 N y Yy .
= Ok X >
58 ¢
IPC 4 32 & @ |
L ¢y 7T = <« window full s
e o
W/D
/ : |
< >< > time
base penalty

S. Eyerman et al., ACM TOCS, May 2009
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LONG BACK-END MISS EVENTS
OVERLAPPING LONG-LATENCY LOADS

— N
2 8 — «
EE 38 0
©
23 EE
O (@) T T .
— = T memory access time
5 6 2= 5.S/D .
T ® 8 Y &y load miss 2
A 22 28 . —>  /returns
IPC 5, o, 22 : load miss 1 |
4 window full —
< > P returns —
S/D S/D v
S new instrs can
be dispatched
: >
¢ ¢ > time
base | penalty

S. Eyerman et al., ACM TOCS, May 2009
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CORE-LEVEL TIMING ‘
LONG-LATENCY LOAD

old window

!

h|ead tail head I tail

If long-latency load (LLC miss):
core sim time += miss latency

AND walk the window to issue independent miss
events: these are hidden under the long-latency load
— second-order effects

AND empty old window

34



|-CACHE MISS ‘
(L1, L2, TLB)

|-cache miss
occurs miss delay
< A >
¢ ey
front-end
IPC

v drain

front-end
re-fill

L
\

time

N

NS

base penalty

S. Eyerman et al., ACM TOCS, May 2009
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CORE-LEVEL TIMING: |-CACHE/TLB

old window window

core i ‘ E

! r 11

h|ead tclail W

If I-cache or I-TLB miss:
core sim time += miss latency
AND empty old window



5

BRANCH MISPREDICTION

mispredicted

branch : :
branch : mispredicted
mispredicted dlsp?tched branch
front-end branch executed
drain ”resolution time
IPC ¢ N N

____1

front-end
re-fill

ra
A

[
time

P N A
AY 7N 7

base penalty

S. Eyerman et al., ACM TOCS, May 2009
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CORE-LEVEL TIMING: BRANCH MISPREDICT

old window window

core i ‘ E

! r 11

h|ead tclail W tclail

If branch misprediction:

core sim time += branch resolution time
+ front-end pipeline depth

AND empty old window
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CORE-LEVEL TIMING: BRANCH MISPREDICT

core i old window ﬁ i window
}tzlail head tail
head

Branch resolution time = longest critical path in
‘old window’ leading to the branch

39
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CORE-LEVEL TIMING: SERIALIZING INSN

old window window

core i ‘ E

! r 11

h|ead tldil W tlail

If serializing instruction:
core sim time += window drain time
window drain time=max (W /D, L)
AND empty the old window



CYCLE STACKS T
CPI

* Where did my cycles go?
e CPI stack

— Cycles per instruction
— Broken up in components

* Normalize by either
— Number of instructions (CPI stack)
— Execution time (time stack)

* Different from miss rates: B L2 cache
cycle stacks directly quantify E cache

the effect on performance B sase

41



CONSTRUCTING CPI STACKS - T

* Interval simulation:
track why time is advanced
— No miss events

* |ssue instructions at base CPI
* Increment base component

— Miss event
e Fast-forward time by X cycles

* Increment component by X B L2 cache

[ ] I-cache
I Branch
B Base

42
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CYCLE STACKS FOR PARALLEL APPLICATIONS

By thread: heterogeneous behavior

in @ homogeneous application?
SPLASH-2 - FFT

o,
100% BN sync-barrier

[/ sync-crit_sect
B mem-dram
B mem-off _socket
EEE mem-I3
/1 mem-I12_neighbor
B mem-|2
E== mem-I1_neighbor
B mem-l1d
— ifetch
40% B branch
1 depend-fp
B depend-int
T dispatch_width

80%

60%

Percent of time

20%

o 1 2 3 4 5 6 7

Thread number

0%

43
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USING CYCLE STACKS TO EXPLAIN SCALING
BEHAVIOR
Rodinia - SRAD
100%

sync-barrier
sync-crit_sect
mem-dram
mem-off _socket
mem-I3
mem-12_neighbor
mem-12
mem-I1_neighbor
mem-l1d

ifetch

branch

1 depend-fp
B depend-int
1 dispatch_width

80% | -

60% |

40%

Percent of time

20% | -

0%

8¢ 8¢ 16c  16¢C
large small large small 44
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USING CYCLE STACKS TO EXPEAIN SCALING
BEHAVIOR

e Scale input: application becomes DRAM bound

Rodinia - SRAD

100% .
sync-barrier

sync-crit_sect
mem-dram
mem-off _socket
mem-I3
mem-12_neighbor
mem-12
mem-I1_neighbor
mem-l1d
ifetch
branch
1 depend-fp
B depend-int
1 dispatch_width

80% | -

60% | -

40% | -

Percent of time

20% | -

0%

8¢ 8¢ 16c  16¢C
large small large small 45
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USING CYCLE STACKS TO EXPEAIN SCALING
BEHAVIOR

e Scale input: application becomes DRAM bound
e Scale core count: sync losses increase to 20%

Rodinia - SRAD

0,
100% sync-barrier

sync-crit_sect

mem-dram

80% [ - mem-off socket
. mem-I3
= mem-|2_neighbor
= 60% | - mem-|I2
° mem-I1_neighbor
= mem-11d
% 40% | — - ifetch
o branch

1 depend-fp
B depend-int
1 dispatch_width

20% | -

0%
8c 8c 16¢C 16¢C

large small large small 46
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OVERVIEW

 Parallel simulation with relaxed
synchronization

— Flexible synchronization schemes between cores

— Trade off causality errors for simulation speed
* Parallelism inside Sniper
 Hardware components

48



RELAXED SYNCHRONIZATION

* Graphite introduced relaxed synchronization with
a number of different synchronization schemes

— none: only synchronizes when the application does;
for pthread calls, etc.

— random-pairs: synchronizes random pairs of threads

— barrier: synchronizes all threads at a given simulated
time interval
* Sniper defaults to barrier synchronization
with 100ns intervals

— Multi-machine mode not supported, so tight
synchronization is easier

49
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BARRIER SYNCHRONIZATION [N ACTION

simulated time

A

barrier
pthread cond_signal
pthread_cond_wait
““““““““““ barrier
barrier

real time

50



PARALLELISM INSIDE SNIPER

e Each simulated core is run inside its own thread

— Includes functional simulation, timing models for core
and cache

— Each core model maintains its own local time

e Extra threads for network and DRAM models

— Can process invalidation requests without interrupting
the core model

* Each thread is allowed to independently make
progress
— Causality errors can occur, no rollback
— Skew is limited to 100ns

51
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THREADS IN SNIPER a4

application threads network threads

52
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TIME IN SNIPER .

 Each memory access instantly returns latency
* Application threads maintain time
* Network threads reset time for each request

core core t=30 ‘0 t=4 core core

L11/D Q& L11/D t=29 L | t=1 L11/D L11/D &
L2 L2 t=28 L. t=5 Wi Wi

I — I
t=27 t=10 ) t=22 3

E

'I '- 1B
t=15 t=26 NI t=24 0

T

t=20
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MODELING CONTENTION

* Events may happen out of order
* How to model bandwidth / contention?

— History list
* Resource in use at times 0...10, 12...17, 25...30

* Access at 15: delay =2
* Access at 8, length 5: ?

e Causality errors are possible
— Effect is limited, as long as average bandwidth is OK
— Allows for faster simulation, easier implementation
— Speed versus accuracy trade-off

54
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CONFIGURABLE COMPONENTS

 Hardware options
— Branch predictors
— Cache hierarchies

* Core options

— Core models: interval, one-IPC, Graphite legacy
— DVFS

e Networks

55



BRANCH PREDICTOR

* Pentium-M-style branch predictor

Current Instruction

IP address

Path Information Register
(PIR)

14 0 l

14

Hash Access

.

»| Function (HASH)

V. Uzelac, ISPASS’09

Offset = IP [3:0]
Index = IP [12:4]

Tag =P [21:13]

Index = IP [9:4]
Tag = 1P [15:10]

15 bits
Branch target buffer (BTB) Indirect target cache (iBTB)
BTB hit 0 - -
J l I P Ta Target _'B»TB "
»[ Tag | Type | Offset[ Target | PLRU EIB type Index = HASH [13:6] " | (7 bft’s) (32 %it)
(9 bits) [(2-3 bits) | (4 bits) | (32 bits)| (3 bits) Tag = HASH [14,5:0]
BTB target
waya| > 255
511 Way 0
Global predictor
Loo;i branch predictor buffer (LPB) Loop 0 [
—» outcome
P Tag (6 bits) | 2bC
° prediction index = HASH[12.6] L2g (6 bits) |
»| Tag | Count | Limit |Prediction . Tag = HASHI[5:0]
(6 bits)| (6 bits) | (6 bits)] (1bit) | LPB hit Way 3
ay
Way 0 BTB hit 511 L
63 ] Global Global
Bimodal Table . outcome predictor hit
0 Bimodal Loop prediction
outcome prediction predictor hit Outcome prediction

Index = IP[11:0]

»| 2bC

Loop

4095

outcome prediction —»|

|
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PARAMETRIC SHARED CACHE-HIERARCHY
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EXPERIMENTAL SETUP

e Benchmarks

— Complete SPLASH-2 suite
* 1to 16 threads
* Linux pthreads API

— Extensive use of microbenchmarks to tune
parameters and track down problems

e Hardware
— Four-socket Intel Xeon X7460 machine
— Core2 (45nm, Penryn) with 6 cores/socket

59
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EXPERIMENTAL SETUP: ARCHITECTURE




A

HINTS FOR COMPARING TO HARDWARE

* Threads are pinned to their own core
pthread setaffinity np()

* Steepstep is disabled

echo performance > /sys/devices/system/cpu/*/cpufreq/
scaling governor

 Turbo mode, Hyperthreading disabled
— BIOS setting

* Use hardware performance counters

— But can be difficult to interpret
— Overlapping cache misses (HW) vs. hits (Sniper)

61



Execution time (s)

| g %
INTERVAL PROVIDES NEEDED-ACCURACY

fft

g -

O—*NW&U‘I

A

el

hardware interval nelPC iocoom

simple magic

1_1 21 ) 41 | § w16

2

raytrace

A

on time (s)

The interval core model
provides consistent accuracy
of 25% avg. abs. error,

with a minimal slowdown

MHMHH

i

hardware interval onelPC iocoom  simple

] 2 1 1 4 1

magic

] 8 mmmm {6
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GooD OVERALL ACCURAGY

A

INTERVAL

ds ioem

bsu-iaiem

| puaijon

aoellfel

XIpeJ

Aysoipe.

16 cores

Juooun|

Juoon|

L Wwj

juodu'ueado

interval =———1

onelPC =71

e

Aysa|oyo

sauleq

(arempiey 0] anne|al)
3w} uolNoax3

—
—
i
1

| Juod'uUEeado

|
—
-
o
™ o

Good accuracy for the

entire benchmark suite
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INTERVAL: BETTER RELATIVE ACCURACY

* Application scalability is affected by memory bandwidth

* Interval model provides more realistic memory request
streams, which results in a more accurate scaling prediction

barnes water.nsq

16

Speedup
Speedup

Cores Cores

onelPC —+— hardware ---*--- onelPC —+— hardware ---*---
interval ---x--- interval ---x---
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APPLICATION OPTIMIZATION

* Splash2-Raytrace shows very bad scaling behavior
* CPI stack shows why: heavy lock contention
* Conversion to use locked increment instruction helps

15.9
14
\
16 | \
",.El y [ ) [R—— & ......................................................
LK & 7
Q 8 B '% 1.0 [ R BRI oo [l LA
: g E :00:00:
8 4 | § 0.8 |- R KSOH. e R PO
2 2
[}
0.6 | LRI RO +ovvveeeven - LK GG - KKK A -+
(7)) 2 . g
0.4 [ PSR DR v [S5 POCK
1F )
| | | | | 02 ........ N A T P
1 2 4 8 16 00
1 16 1 16
hardware —— base base opt  opt
interval ---x--- RRRRRRA [)r;:rnn(;ll? SN sync-mute
- ync-mutex
hardware opt X EXX= depend EZZ2 mem-dram
interval-opt & 1 issue ES<Y mem-remote
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Simulation speed (MIPS)

SIMULATOR

‘ 5 e A

| -
PERFORMANCE

Sniper currently scales to 2 MIPS t

fmm

/

2

pa——

Lok

Iz

ar

A

interval onelPC

Simulation speed (MIPS)

10 203 4 &5

Typical simulators run at
10s-100s KIPS, without scaling

0
/ interval  onelPC

4 =5 8= 16 ==
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SYNCHRONIZATION VARIABILITY

Execution time variability

150%
|
c Fo
D JOOYo [ S R
£ ; | .
> , !
E 50% ................................................................................ ".’ ..... ./.>.<..\.\...‘.‘ ............................ ;.;.gﬁx.\. ...............
© X ¥-- —-)K‘ ',// N ‘.‘ 7 -
2 ~ '\‘x‘ ’, X‘\ L \‘
x - X\~ R L - ~ \\I ///ii‘ %”_-
0% ; - H——
- - - —
8 € g @ 2 © & © o © E ¢ = 7
e = et o (&) o (&) @ (&) w“ &) © :
= § 55 S § 3 o ¢ S I3
> c -
— T g = S O = ©
Q O =
O o
o
barrier —+— random-pairs ---x--- none ------

Variability due to relaxed
synchronization is application specific
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Simulation time (h)

A

R

FLEXIBILITY TO CHOOSE NEEDED FIDELITY

fft

+.
v
\

interval-barrier
interval-no-branch

* interval-r?ndom-pairs

l"rintervahna-icaghg B

+ Interval-none

———+-anelPC-barrier
i S T onelPC- tandom: pair
\ -~ . L T RhelPC-norje
\ ~
0 50 100 150 200 250~ -~ \300 350
Error (%) e -
-~
~
] fft [zoomed] ~ o .
=3 *;}gterva_lfba_rrier
o “+nterval-no-branch. .
5 N -+ interval-random-pairs
= N "+ interval-none
3 ~
E N
n % interval-no-icache
-5 0 5 10 15 20 25 30
Error (%)
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Simulation speed (MIPS)

MANY-CORE SIMULATIONS

High simulation speed up to 1000 simulated cores
— Pin limitation (to be lifted shortly) at 1020 cores
— Efficient simulation: L1-based benchmarks execute faster
— Host system: dual-socket Xeon X5660 (6-core Westmere), 96 GB RAM

10 1e+07
s
I 1e+06 F /
=
_ k)
1 \ih o 100000 } M
RS -
kS
2 10000
=
01 1 L L 1 1 1 1 1000 1 1 1 1 1 1 1
16 32 64 128 256 512 1000 16 32 64 128 256 512 1000
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OVERVIEW

Obtain and compile Sniper
Running

Configuration

Simulation results

Interacting with the simulation
— SimAPI: application
— Python scripting
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RUNNING SNIPER

 Download Sniper

— http://snipersim.org/w/Download
* Download tar.gz

* Git clone
~/sniper$ export GRAPHITE ROOT=$%(pwd)
~/sniper$ make

* Running an application

~/sniper$ ./run-sniper -- /bin/true
~/sniper/test/fft$ make run
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RUNNING SNIPER

* |Integrated benchmarks distribution

— http://snipersim.org/w/Download Benchmarks

~/benchmarks$ export BENCHMARKS ROOT=$%(pwd)

~/benchmarks$ make

~/benchmarks$ ./run-sniper -p splash2-fft \
-i small -n 4

e Standardizes input sets and command lines
* Includes SPLASH-2, PARSEC
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INTEGRATION WITH BENCHMARKS

* To add a new benchmark
— Add source code
— Add _init__.py file
* Provides application invocation details
* Define input sets (e.g.: test, small, large)

— Mark the ROI region
— Simple example: see local/pi
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MULTI-PROGRAMMED WORKLEOADS

e Recording traces (SIFT format)
$ ./record-trace -o fft -- test/fft/fft -pl

* Limited trace, by instruction count:
Fast-forward (-f), detailed length (-d), block size (-b)
$ ./record-trace -o fft -f 1e9 -d 1e9 -b 1le8 \
-- test/fft/fft -pl -m20

* Running traces
$ ./run-sniper -c gainestown -n 4 \
--traces=gcc.sift,swim.sift,\
swim.sift,equake.sift
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REGION OF INTEREST

e Skip benchmark initialization and cleanup

* Mark code with ROl begin / end markers

— SimRoiStart() / SimRoiEnd() in your own
application

—$ ./run-sniper --roi -- test/fft/fft

* Already done in benchmarks distribution
— benchmarks/run-sniper implies --roi
— Use --no-roi to override

* Cache warming during pre-ROI period
— Use --no-cache-warming to override
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CONFIGURATION

« Stackable configuration files (run-sniper -c)
and explicit command-line options (-g)
— Template configurations in sniper/config/*.cfg (-c name)
— Your own local configuration files (-c filename.cfg)
— Explicit option: -g --section/key=value
* Multiple configuration files, and -g options, can be combined
— Config files specified later on the command line take precedence
— config/base.cfg is always included
— If no -c option is provided, config/gainestown.cfg is the default

(quad-core Nehalem-based Xeon)

 Complete configuration is stored in sim.cfg after each run
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CONFIGURATION

 Example configuration: largecache.cfg

[perf model/13 cache]
cache size = 16384 # KB

$ run-sniper -c gainestown -c largecache.cfg

* Equivalent to:

$ run-sniper -c gainestown \
-g --perfmodel/13 cache/cache size=16384

78



SIMULATION RESULTS

* Files created after each simulation:

— sim.cfg: all configuration options used for this run
(includes defaults, all -c and -g options)

— sim.out: basic statistics (number of cycles, instructions
per core, cache access and miss rates, ...)

— sim.stats: complete set of all recorded statistics at key
points in the simulation (start, roi-begin, roi-end, stop)

e Use the graphite lib Python package for parsing
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SIMULATION RESULTS

graphite lib.get results() parses sim.cfg, sim.stats
and returns configuration and statistics
(roi-end — roi-begin) for all cores

~/sniper/tools$ python

> import graphite 1lib

> results = graphite lib.get results(resultsdir = “..”)

> print results

{‘config’: {‘general/total cores’: ‘64,
‘perf_model/core/frequency’: 2.66°, ..},

‘results’: {‘performance_model.instruction count’:[123],
‘performance_model.elapsed time’: [23000000], ..}}
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SIMULATION RESULTS

e Let’s compute the IPC for core O

e Core frequency is variable (DVFS)
so cycle count has to be computed
— Time is in femtoseconds, frequency in GHz

> instrs = results[ ‘results’]
[ ‘performance _model.instruction count’ ][9]

> cycles = results[ ‘results’]
[ ‘performance _model.elapsed time’ ][9]

* float(results[ ‘config’ ][ ‘perf _model/core/frequency’])
* le-6 # femtoseconds -> nanoseconds

> ipc = instrs / cycles

2.0
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SIMULATION RESULTS

e CPI stacks (user of graphite_lib)
$ ./tools/cpistack.py [--time|--cpi|--abstime]

CPI CPI % Time %
Core @ SPLASH-2 - FFT
depend-int 0.20 23.42% 23.42%  100% BN sync-barrier
depend-fp 0.16 18.94% 18.94% — sync-crit_sect
branch 0.12 14.04% 14.04% B mem-dram
ifetch 0.04 4.16% 4.16% 80% mEmmm mem-off_socket
mem-11d 0.21 24.41% 24.41% B mem-I3
mem-13 0.02 2.72% 2.72% E—— mem-I2_neighbor
mem-dram 0.05 5.73% 5.73% E 60% — xmﬁ idhbor
sync-mutex 0.02 2.59% 2.59% % _':' Ceomiig
sync-cond 0.03 3.01% 3.01% ¢ == ifetch
other 0.01 0.97% 0.97% g 40% B branch
o /1 depend-fp
total 0.84 100.00% 0.00s | dfapend-int .
Core 1 20% [/ dispatch_width

depend-int 0.20 23.92% 23.92% ----....
depend-fp 0.16 18.79% 18.79%
branch 0.12 13.72% 13.72% 0%
mem-11d 0.20 24.06% 24.06% 0 1 > 3 4 5 6 7
mem-13 0.06 6.79% 6.79%
sync-mutex 0.04 5.22% 5.22% Thread number
sync-cond 0.05 5.60% 5.60%
other 0.02 1.89% 1.89%
total 0.85 100.00% 0.00s
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INTERACTING WITH SNIPER

input/
binary cmdline configuration

application

SImAPI

<€

Python
scripts
Sniper simulator

statistics

|

cpi-stacks
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SIMAPI IMPLEMENTATION

 Magic instructions allow the application to talk to
the simulator directly

__asm___ volatile (
"xchg %%bx, %%bx\n"
"=a" (_res) /* output */
: "a" (_cmd),
"b" (_argo9),
"c¢" (_argl) /* input */
); /* clobbered */

* Pin intercepts this instruction and passes control
to the simulator

e Command and arguments passed through
rax/rbx/rcx registers, result in rax
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APPLICATION SIMAPI

e Calling simulator API functions from your C program
#include <sim_api.h>

— SimInSimulator()
* Return 1 when running inside Sniper, 0 when running natively

— SimGetProcld()

e Return processor number of caller
— SimRoiStart() / SimRoiEnd()

 Start/end detailed mode (when using ./run-sniper --roi)
— SimSetFreqMHz(proc, mhz) / SimGetFreqMHz(proc)

» Set / get processor frequency (integer, in MHz)

— SimUser(cmd, arg)
* User-defined function .



PYTHON SCRIPTING

Scripts are run on simulator startup

— Register hooks: callbacks when certain events
happen during the simulation

— See common/system/hooks_manager.h for all
available hooks

Use an existing script from sniper/scripts/*.py:

./run-sniper -s scriptname

Or your own script:
./run-sniper -s myscriptname.py

Use sim package for convenience wrappers
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PYTHON SCRIPTING

* Low-level script
e Execute “foo” at each barrier synchronization

import sim_hooks
def foo(t):

print ‘The time 1is now’, t
sim_hooks.register(sim _hooks.HOOK PERIODIC, fo0o0)
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PYTHON SCRIPTING

* Higher-level script
e Execute “foo” at each barrier synchronization

import sim
class Class:
def hook periodic(self, t):
print ‘The time 1is now’, t
sim.util.register(Class())
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PYTHON SCRIPTING

* High-level script: execute “foo” every X ms
* Passin parameter using
./run-sniper -s myscript.py:X

import sim
class Class:
def setup(self, args):
sim.util.Every(long(args)*sim.util.Time.MS,
self.periodic)
def periodic(self, t, t delta):
print ‘The time is now’, t
print ‘Elapsed time since last call’, t delta
sim.util.register(Class())
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PYTHON SCRIPTING

* Access configuration, statistics, DVFS

* Live periodic IPC trace:
— See scripts/ipctrace.py for a more complete example

class IPCTracer:

def setup(self, args):
sim.util.Every(1*sim.util.Time.US, self.periodic)
self.instrs prev = 0

def periodic(self, t, t delta):
freq = sim.dvfs.get frequency(9)
cycles = t delta * freq * 1le-9 # fs * MHz -> cycles
instrs = long(sim.stats.get( ‘performance_model’, 0,

‘instruction_count’))

print ‘IPC =’, (instrs - self.instrs _prev) / cycles
self.instrs _prev = instrs
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PYTHON & MAGIC INSTRUCTIONS

* Communicate information between application
and Python script
— E.g.: simulated hardware performance counters

* Application:

uint64_t ninstrs = SimUtil(@xdeadbeef, SimGetProcId())

e Python script:
class PerfCtr:
def setup(self):
sim.util.register_ command(@xdeadbeef, self.compute)
def compute(self, arg):
return sim.stats.get( ‘performance_model’, arg,

“instruction_count’)
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NEAR TERM IDEAS

Multiple processes

— A number of multi-threaded applications
— MPI support

Heterogeneous cores at run-time

— Big: 4-issue processor

— Small: 2-issue processor

Scheduling/Migration support

Multiple processor configurations

— Currently the simulator is compiled to support a single
type of processor (Core2 vs. Nehalem vs. Sandy Bridge)
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