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INTEL EXASCIENCE LAB

e Collaboration between Intel, imec
and 5 Flemish universities

e Study Space Weather as an HPC workload

[ = |=
¢ 1 T ¢

I

Architectural Simulation |:> [




~
ExaScience Lab
Intel Labs Europe

THE SNIPER MULTI-CORE SIMULATOR
INTRODUCTION

WiM HEIRMAN, TREVOR E. CARLSON,
IBRAHIM HUR AND LIEVEN EECKHOUT

HTTP://WWW.SNIPERSIM.ORG

umggﬁmn (||-|te| ) SATURDAY, JUNE 9+, 2012

ISCA 2012, PORTLAND, OR



| -
TRENDS IN PROCESSOR DESIGN: CACHE

e Cache sizes are increasing
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TRENDS IN PROCESSOR DESIGN: CORES

* Number of cores per node is increasing
— 2001: Dual-core POWER4
— 2005: Dual-core AMD Opteron
— 2011: 10-core Intel Xeon Westmere-EX
— 201x: Intel MIC Knights Corner (50+ cores)



SIMULATION

* Design tomorrow’s processor using today’s
hardware
* Simulation

— Obtain performance characteristics for new
architectures

— Architectural exploration

— Early software optimization
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DEMANDS ON SIMULATION ARE INCREASING

* |Increasing core counts
— Linear increase in simulator workload
— Single-threaded simulator sees a rising gap

* workload: increasing target cores

 available processing power: near-constant single-
thread performance of host machine

— Need to use all cores of the host machine
—> Parallel simulation
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DEMANDS ON SIMULATION ARE INCREASING

* |ncreasing cache size

— Need a large working set to fully exercise a large
cache

— Scaled-down applications won’t exhibit the same
behavior

— Long-running simulations are required



UPCOMING CHALLENGES

* Future systems will be diverse

— Varying processor speeds
— Varying failure rates for different components
— Homogeneous applications become heterogeneous

e Software and hardware solutions are needed to
solve these challenges

— Handle heterogeneity (reactive load balancing)
— Be fault tolerant

— Improve power efficiency at the algorithmic level
(extreme data locality)

 Hard to model accurately with analytical models

10
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NEEDED DETAIL DEPENDS ON‘FOCUS

Single-event  Required
Component . .
time scale sim time
RTL single clock cycle millions of cycles
00O execution
Core memory ops
L1 cache access
LLC access
\4 \\4
Off-socket microseconds seconds

Too slow

cycle-accurate
models

simple core
models

interval
core
model

Not accurate
enough




INTERVAL SIMULATION

e Qut-of-order core performance model
with in-order simulation speed

branch misprediction
A I-cache miss long-latency load miss

effective dispatch rate

A
\ 4
A
\ 4
A
A

interval 1 interval 2 interval 3 time

D. Genbrugge et al., HPCA’10
S. Eyerman et al., ACM TOCS, May 2009
T. Karkhanis and J. E. Smith, ISCA’04, ISCA’0712



CYCLE STACKS

* Where did my cycles go?

* CPI stack: cycles per instruction,
broken up in components

* Normalize by either

— Number of instructions (CPI stack)

— Execution time (time stack)

e Different from miss rates as
cycle stacks directly quantify
the effect on performance

CPI

B L2 cache
[ ] I-cache
] Branch

. Base
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CYCLE STACKS AND SCALING BEHAVIOR

* Scaling to more cores, larger input set size

* How does execution time scale, and why?

Percent of time

100%

80% | - -

60% | - -

40% | - -

20% | - -

0%

Rodinia -

8c 8c
large small

SRAD

16¢C 16¢C
large small

B sync-barrier
1 sync-crit_sect
B mem-dram
B mem-off _socket
= mem-I3

1 mem-I2_neighbor
B mem-I2

1 mem-I1_neighbor
B mem-l1d

— ifetch

B branch

1 depend-fp
B depend-int
[ dispatch_width
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FAST AND ACCURATE SIMULATION IS NEEDED

* Sniper Simulator
— Interval core model
— Accurate structures (caches, branch predictors, etc.)

— Parallel simulator scales with the number of
simulated cores

* Key Questions
— What is the right level of abstraction? >>I
— When to use these abstraction models? sniper

15
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MANY ARCHITECTURE OPTIONS

16



SIMULATION IN SNIPER

A single-process,
Execution-driven simulation multithreaded :
workload (v1.06) fl‘_‘mCtlonal
simulator
(Pin)
memory hierarchy 4 o >
simulator
branch predictor - U
simulator p— .
processor cores (= .
Multiple, —1 .
Trace-driven simulation single-threaded

workloads (v2.0)

17



TOP SNIPER FEATURES

* |nterval Model

e CPI Stacks

* Parallel Multithreaded Simulator
 Based on Graphite infrastructure
* x86-64 and SSE2 support

e Validated against Core2, Nehalem
e Full DVFS support

* Shared and private caches
 Modern branch predictor

e Supports pthreads and OpenMP, TBB and OpenCL

* SimAPI and Python interfaces to the simulator

* Many flavors of Linux supported (Redhat, Ubuntu, etc.)

24

18



- ; o A &
A :
SIMULATOR COMPARISON

—mmm

Integrated
Func-directed X X X X
User-level X X
Full-system X X X
Archs Supported x64 x64 x64 x64 x64
Alpha
SPARC
Parallel (in-node) X X

Shared caches X X X X

19



SNIPER LIMITATIONS

User-level
— Perfect for HPC

— Not the best match for workloads with significant OS
involvement

Functional-directed
— No simulation / cache accesses along false paths

High-abstraction core model
— Not suited to model all effects of core-level changes

— Perfect for memory subsystem or NoC work

X86 only

20



SNIPER HISTORY

July 2010: Branched from MIT Graphite
 November, 2011: SC'11 paper, first public release

March 2012, version 2.0: Multi-program workloads
 May 2012, version 3.0: Heterogeneous architectures

Today: 150+ downloads from 25+ countries

tacific
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OVERVIEW

* Simulation Methodologies
— Trace, Integrated, Functional-directed

e Core Models
— One-IPC

— Interval
* Interval Model and Simulation Detail
e CPI-Stacks

23
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SIMULATION METHODOLOGIES

Trace-based Simulation
— No wrong-path instructions nor timing-influenced results
— Not the best for multithreaded applications

Functional-First Simulation
— The timing model controls wrong-path execution via checkpoints
— Can be difficult to build

Integrated Simulation

— Timing and functional simulation are closely tied together
— Timing of the core drives when instructions are fetched and executed

Functional-Directed Simulation
— Mispredicted path instructions are not taken into account

* Rolling-back /check-pointing is therefore not needed

— Timing model tends to be separate from the functional model

24
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NEEDED DETAIL DEPENDS ON‘FOCUS

Single-event  Required
Component . .
time scale sim time
RTL single clock cycle millions of cycles
00O execution
Core memory ops
L1 cache access
LLC access
\4 \\4
Off-socket microseconds seconds

Too slow

cycle-accurate
models

simple core
models

interval
core
model

Not accurate
enough
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ONE-IPC MODELING — TOO SIMPLE?

* Simple high-abstraction model

* Our definition of a One-IPC core model
— Scalar, in-order issue
— Account for non-unit instruction exec latencies
— Perfect branch prediction
— L1 D-cache hits are completely hidden
— All other cache accesses incur penalty

26
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ONE-IPC CORE MODEL

e Alternative for memory access traces
— Aims to provide more-realistic access patterns
— Allows for timing feedback

* Nevertheless, One-IPC core models do not
exhibit MLP

— Therefore, request rates are not as accurate as
cycle-level simulators

27



INTERVAL MODEL

e Qut-of-order core performance model with
in-order simulation speed

branch misprediction
A I-cache miss long-latency load miss

effective dispatch rate

A
\ 4
A
\ 4
A
A

interval 1 interval 2 interval 3 time

D. Genbrugge et al., HPCA’10
S. Eyerman et al., ACM TOCS, May 2009
T. Karkhanis and J. E. Smith, ISCA’04, ISCA’0728



k

DETAILED MODEL VS. INTERVAL . SIMV
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DRAM
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@ Execution
Units
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Commit

|

Interval

Simulation

ROB

L)

Functional
Simulator
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KEY BENEFITS OF THE INTERVAL MODEL

* Models superscalar OOO execution
 Models impact of ILP

e Models second-order effects: MLP

* Allows for constructing CPI stacks

30
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MULTI-CORE INTERVAL SIMULATION

memory hierarchy
simulator

functional

simulator

branch predictor
simulator

processor cores
next instruction to dispatch

old window window

! !

I | ~ |

\head v tailj \head v taiI}

dispatched instructions upcoming instructions
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CORE-LEVEL TIMING :

NO MISS EVENTS
dispatcﬁ N ops

f

old window window

I |
head tail head tail

Instantaneous dispatch rate is determined by the
longest critical path in the old window:

Instantaneous dispatch rate =min (W /L, D)
Little’s law
Assumes a balanced architecture
L = longest critical path length in cycles

W = instructions in the old window (max = ROB length)
D = maximum dispatch rate (processor width) 32



LONG BACK-END MISS-EVENTS
ISOLATED LONG-LATENCY LOAD

load resolution

time c,
memory access time
(Iw) L , y w ry \:
'é 8 7 I
S5 ®© o) |
\88 B 3 |
IPC | = 7 .
L T = <« window full s
» R
W/D
‘ | >
< < > time
base penalty

S. Eyerman et al., ACM TOCS, May 2009
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LONG BACK-END MISS-EVENTS
OVERLAPPING LONG-LATENCY LOADS

- «N
a B — «
EE 2 %
TR EE
© O TW T :
= S 8 memory access time
S| G| D= > S/D .
g ® 3§ 5 &y load miss 2
a3 o 2 3 —  /returns
(2] . : :
PC 4 3 2 292 : load miss 1 /
«— window full —
<> > returns ya—y
S/D S/D v
S new instrs can
be dispatched
; ' >
¢ > > time
base penalty

S. Eyerman et al., ACM TOCS, May 2009
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CORE-LEVEL TIMING ,
LONG-LATENCY LOAD

old window

A
head thil  head : tail

If long-latency load (LLC miss):
core sim time += miss latency

AND walk the window to issue independent miss
events: these are hidden under the long-latency load
— second-order effects

AND empty old window

35



|-CACHE MISS ‘
(L1, L2, TLB)

|-cache miss
occurs miss delay
< A >
< o >
front-end
IPC y drain

front-end

re-fill

L
~

N

N

base pehvalty

S. Eyerman et al., ACM TOCS, May 2009

time
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CORE-LEVEL TIMING: |-CACHE/TLB

A

core i | E

old window

|

window

(i

Head

tail W

If I-cache or I-TLB miss:

core sim time += miss latency

AND empty old window

tail
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BRANCH MISPREDICTION

mispredicted

branch : :
branch : mispredicted
mispredicted dlsp?tched branch
front-end branch executed
drain ”resolution time
IPC ¢ 5 N

____1

front-end

I re-fill

V4
A

=
time

~N
N
~N
v

base penalty
S. Eyerman et al., ACM TOCS, May 2009
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CORE-LEVEL TIMING: BRANCH MISPREDIGT

A

core i | E

old window

|

window

(i

head

tail W

If branch misprediction:

core sim time += branch resolution time
+ front-end pipeline depth

AND empty old window

tail




A

CORE-LEVEL TIMING: BRANCH MISPREDIGT

core i old window window
1 IT ‘ 1

thil \head thil

head

Branch resolution time = longest critical path in
‘old window’ leading to the branch

40
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CORE-LEVEL TIMING: SERIALIZING INSN

core i | E

old window

|

window

(i

If serializing instruction:

head

tail W

core sim time += window drain time

window drain time=max (W /D, L)

AND empty the old window

tail




CYCLE STACKS

Where did my cycles go?

CPI stack

— Cycles per instruction
— Broken up in components

Normalize by either
— Number of instructions (CPI stack)
— Execution time (time stack)

Different from miss rates:
cycle stacks directly quantify
the effect on performance

o |

B L2 cache
[ ] I-cache
] Branch

. Base
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CONSTRUCTING CPI sTACKS - T

* Interval simulation:
track why time is advanced
— No miss events

* |ssue instructions at base CPI
* Increment base component

— Miss event
e Fast-forward time by X cycles

* Increment component by X B L2 cache

[ ] I-cache
I Branch

. Base
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CYCLE STACKS FOR PARALLEL APPLICATIONS

By thread: heterogeneous behavior

in @ homogeneous application?
SPLASH-2 - FFT

Percent of time

100%

80%

60%

40%

20%

0%

0

1

2 3 4 5

Thread number

6

7

I sync-barrier
1 sync-crit_sect
B mem-dram
B mem-off socket
B mem-I3

/1 mem-I2_neighbor
B mem-12

E== mem-I1_neighbor
B mem-l1d

1 ifetch

B branch

1 depend-fp
B depend-int
1 dispatch_width
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USING CYCLE STACKS TO EXPLAIN SCALING
BEHAVIOR

Percent of time

100%

80%

60%

40% | -

20%

0%

Rodinia -

8¢ 8¢
large small

SRAD

16c  16¢C
large small

JTRLIEL T

—1
I
—

sync-barrier
sync-crit_sect
mem-dram
mem-off _socket
mem-I3
mem-|2_neighbor
mem-12
mem-I1_neighbor
mem-I1d

ifetch

branch

depend-fp
depend-int
dispatch_width
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USING CYCLE STACKS TO EXPEAIN SCALING
BEHAVIOR

e Scale input: application becomes DRAM bound

Percent of time

100%

80% |

60% | -\

40% | -

20% |

0%

Rodinia -

8¢ 8¢
large small

SRAD

16c  16¢C
large small

sync-barrier
sync-crit_sect
mem-dram
mem-off _socket
mem-I3
mem-|2_neighbor
mem-|2
mem-I1_neighbor
mem-I1d

ifetch

branch

1 depend-fp
B depend-int
[ dispatch_width

JTRLIEL T
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USING CYCLE STACKS TO EXPEAIN SCALING
BEHAVIOR

e Scale input: application becomes DRAM bound
e Scale core count: sync losses increase to 20%

Rodinia - SRAD

100% _
sync-barrier

sync-crit_sect
mem-dram
mem-off _socket
mem-I3
mem-|2_neighbor
mem-|2
mem-I1_neighbor
mem-I1d

ifetch

branch

1 depend-fp
B depend-int
[ dispatch_width

80% | -

60% | -

40% | -

JTRLIEL T

Percent of time

20% | - -

0%
8¢ 8¢ 16c  16¢C
large small large small 47
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OVERVIEW

 Parallel simulation with relaxed
synchronization

— Flexible synchronization schemes between cores

— Trade off causality errors for simulation speed
e Parallelism inside Sniper
 Hardware components

54



RELAXED SYNCHRONIZATION

* Graphite introduced relaxed synchronization with
a number of different synchronization schemes

— none: only synchronizes when the application does;
for pthread calls, etc.

— random-pairs: synchronizes random pairs of threads
— barrier: synchronizes all threads at a given simulated
time interval
* Sniper defaults to barrier synchronization
with 100ns intervals

— Multi-machine mode not supported, so tight
synchronization is easier

55
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BARRIER SYNCHRONIZATION [N ACTION

Adiil & S A . s W
barrier
pthread_cond_signal
pthread _cond_wait

barrier
Q

o B

S barrier
O
Q
)
L
-
E
)

real time 56



PARALLELISM INSIDE SNIPER

e Each simulated core is run inside its own thread

— Includes functional simulation, timing models for core
and cache

— Each core model maintains its own local time

e Extra threads for network and DRAM models

— Can process invalidation requests without interrupting
the core model

 Each thread is allowed to independently make
progress
— Causality errors can occur, no rollback
— Skew is limited to 100ns

57
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THREADS IN SNIPER

application threads

network threads

58
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TIME IN SNIPER a4

 Each memory access instantly returns latency
* Application threads maintain time
* Network threads reset time for each request

core core t=30 10 t=4 core core

LLI/D B L11/D W t=29 1| t=1 L11/D L11/D &
L2 Wi t=28 L: t=5 L2 L2

I - I

L3 t=27 t=10 } t=22 3

L . I
t=15 t=26 NI

T

t=24 '0
t=20 |
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MODELING CONTENTION

* Events may happen out of order
* How to model bandwidth / contention?

— History list
* Resource in use at times 0...10, 12...17, 25...30

* Access at 15: delay =2
e Access at 8§, length 5: ?

e Causality errors are possible
— Effect is limited, as long as average bandwidth is OK
— Allows for faster simulation, easier implementation
— Speed versus accuracy trade-off

60
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CONFIGURABLE COMPONENTS

 Hardware options
— Branch predictors
— Cache hierarchies

e Shared, private
e Optional prefetcher

* Core options
— Core models: interval, one-IPC, Graphite legacy
— DVFS, heterogeneous

e Networks

61



BRANCH PREDICTOR

* Pentium-M-style branch predictor

Current Instruction

Path Information Register
(PIR)

IP address

14 0 l

14

V. Uzelac, ISPASS’09

15 bits

&
XOR }

Branch target buffer (BTB)

> Hash Access
Function (HASH)

Offset = IP [3:0]
Index = IP [12:4]

Tag = IP [21:13]

Index = IP [9:4]
Tag = IP [15:10]

I BTB hit
0 —>
> Tag Type | Offset | Target | PLRU BTB type
(9 bits) |(2-3 bits) [ (4 bits) [ (32 bits) | (3 bits) —>
BTB target
way3| >
Loop branch predictor buffer (LPB) Loop
| —» outcome
0 prediction
» Tag | Count| Limit |Prediction .
(6 bits)| (6 bits)| (6 bits)] (1 bit) LPB hit
Lt BTB hit
Way 0 I
63 Y
J
Bimodal Tabl
0 moca abe Bimodal Loop
outcome prediction _~x_predictor hit
»| 2bC

Index = IP[11:0]

Loop

4095

outcome prediction —»| )

Indirect target cache (iBTB)

0 iBTB hit
»| Tag Target —>
Index = HASH [13:6] | (7 bits) | (32bit) |iBTB target
Tag = HASH [14,5:0] >
255
Global predictor
0 I
Tag (6 bits) | 2bC
Index = HASH[14:6] »1Tag (6 bits) I
Tag = HASH[5:0]
Way 3
511 Lo L
Global Global
outcome predictor hit
prediction

Outcome prediction
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PARAMETRIC SHARED CACHE - HIERARCHY
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HARDWARE VALIDATION

 Why validation?
— Debugging
— Verifying modeling assumptions

— Balance between accuracy and generality

* e.g.: loop buffer in Nehalem/Westmere;
uop-cache in Sandy Bridge

* Current status:
— Validated against Core2 (internal, results @ SC'11)

— Nehalem ongoing (public version)

67



EXPERIMENTAL SETUP

e Benchmarks

— Complete SPLASH-2 suite
* 1to 16 threads
* Linux pthreads API

— Extensive use of microbenchmarks to tune
parameters and track down problems

e Hardware
— Four-socket Intel Xeon X7460 machine

— Core2 (45nm, Penryn) with 6 cores/socket

68
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EXPERIMENTAL SETUP: ARCHITECTURE
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HINTS FOR COMPARING TO HARDWARE

* Threads are pinned to their own core
pthread setaffinity np()

* Steepstep is disabled

echo performance > /sys/devices/system/cpu/*/cpufreq/
scaling governor

 Turbo mode, Hyperthreading disabled
— BIOS setting

* Use hardware performance counters
— But can be difficult to interpret
— Overlapping cache misses (HW) vs. hits (Sniper)

70



Execution time (s)

-~

| ! .
INTERVAL PROVIDES NEEDED-ACCURACY

fft

O—*Nw#(ﬂ

b

The |

ol

hardware interval nelPC iocoom

simple magic

1 1 21 1 41 ] 8§ {6

2

raytrace

.

on time (s)

The interval core model
provides consistent accuracy
of 25% avg. abs. error,

with a minimal slowdown

MHMHH

i

hardware interval onelPC iocoom  simple magic

1 21

Y S — s
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GOoOD OVERALL ACCURACY

A

INTERVAL

16 cores

i

T

WA T O B

i

™

N o o

ds-iarem
bsu‘iayem
puaI|oA
aoelfel
XIpe
Aysoipe.
JU02U'UBE20
JU02'UB320
juooun|
uoon|

L Wwj

interval =1

onelPC ==

W
Aysa|oyo

sauleq

(arempiey 0] anne|al)
a1} uonNoax3

Good accuracy for the

entire benchmark suite
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INTERVAL: BETTER RELATIVE ACCURACY

* Application scalability is affected by memory bandwidth

* Interval model provides more realistic memory request
streams, which results in a more accurate scaling prediction

barnes water.nsq

16

Speedup
Speedup

Cores Cores

onelPC —+— hardware ---*:--- onelPC —+— hardware ---*---
interval ---x--- interval ---x---
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APPLICATION OPTIMIZATION

* Splash2-Raytrace shows very bad scaling behavior
* CPI stack shows why: heavy lock contention
* Conversion to use locked increment instruction helps

15.9
14 \\
16 \
B 12 | \
K 5 N\
a 8 — ,_E':" i 8 10 | , ..
3 Y E
8 4 Z" 08 |-~
2 E
(O]
06 ........
n 2 L %
3 04 |-
1F o)
I I I l | 0.2 |~
1 2 4 8 16 0.0
1 16 1 16
hardware —+— base base opt  opt
interval ---x--- — glem-L3 t
- EXX=2a branc NN sync-mutex
hardware Opt X EXXX depend EZZ32 mem-dram

interval-opt 8- 1 issue ES<Y mem-remote
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Simulation speed (MIPS)

SIMULATOR

fmm

i

| -
PERFORMANCE

: S 4

Sniper currently scales to 2 MIPS t

/L

2

—y

- ;L

interval onelPC

{Z

Simulation speed (MIPS)

10 203 4 0=

Typical simulators run at
10s-100s KIPS, without scaling

0
/ interval  onelPC

405 8= 16 ==
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SYNCHRONIZATION VARIABILITY

Execution time variability

150%
—
2 o
D QOO0 [ e o P
E I' “ /’
- ! ' .
E BOY [ L /X\\,%\ ...............
ch X\ % oo x‘ ,"/// \\ “ 7’/,/ >
E \\—\_x~ e x\\ _ \“ N
¥R S //ij, &
0% L— : =
3 € § 82 &2 ¢ § & g E T X §
= ®© 5 5§ & £ S5 0o c c 3
© 0 > O] c Y - e © > ©
- — © = (&) () -
o) &) S
Q o
o
barrier —+— random-pairs ---x--- none ------

Variability due to relaxed
synchronization is application specific
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Simulation time (h)

A i

FLEXIBILITY TO CHOOSE NEEDED FIDELITY

fft

+ interval-barrier
Y nmterval-no-branch

\ . .
* mterval-r?ndom-palrs
+ interval-none

\interval-no-icache __

: ———+.onelPC-barrier
~ .
-~ - . .
\ -~ onelPC-random, helPC-norje
! ~~
0 50 100 150 200 250 o~ \300 350
Error (%) - . -
-~
~
fft zoomed] ~ o .
= +interval-barrier
0 “winterval-no-branch.
g ‘ "-+1'nterv_a_l,-ra_ndom-pairs
= . N “+ interval-none
- ‘
E .
=

“+ interval-no-icache

10 15 20 25 30
Error (%)
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Simulation speed (MIPS)

MANY-CORE SIMULATIONS

High simulation speed up to 1000 simulated cores
— Pin limitation (to be lifted shortly) at 1020 cores
— Efficient simulation: L1-based benchmarks execute faster
— Host system: dual-socket Xeon X5660 (6-core Westmere), 96 GB RAM

10 1e+07

c
3 1e+06 | //
=
, o
1 Xh ¢ 100000 | LT
k=) -
©
2 10000
=
01 1 L L L 1 L 1 1000 1 1 1 1 1 1 1
16 32 64 128 256 512 1000 16 32 64 128 256 512 1000
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OVERVIEW

Obtain and compile Sniper
Running

Configuration

Simulation results

Interacting with the simulation
— SimAPI: application
— Python scripting
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RUNNING SNIPER

 Download Sniper

— http://snipersim.org/w/Download
* Download tar.gz

* Git clone
~/sniper$ export GRAPHITE ROOT=$%$(pwd)
~/sniper$ make
* Running an application
~/sniper$ ./run-sniper -- /bin/true
~/sniper/test/fft$ make run
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RUNNING SNIPER

* Integrated benchmarks distribution

— http://snipersim.org/w/Download Benchmarks
~/benchmarks$ export BENCHMARKS ROOT=$%(pwd)
~/benchmarks$ make

~/benchmarks$ ./run-sniper -p splash2-fft \
-1 small -n 4

e Standardizes input sets and command lines
* |Includes SPLASH-2, PARSEC
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INTEGRATION WITH BENCHMARKS

* To add a new benchmark
— Add source code
— Add __init__.py file
* Provides application invocation details
* Define input sets (e.g.: test, small, large)

— Mark the ROI region
— Simple example: see local/pi
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MULTI-PROGRAMMED WORKLOADS

* Recording traces (SIFT format)
$ ./record-trace -o fft -- test/fft/fft -pl

* Limited trace, by instruction count:
Fast-forward (-f), detailed length (-d), block size (-b)
$ ./record-trace -o fft -f 1e9 -d 1e9 -b 1e8 \
-- test/fft/fft -pl -m20

* Running traces
$ ./run-sniper -c gainestown -n 4 \
--traces=gcc.sift,swim.sift,\
swim.sift,equake.sift
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REGION OF INTEREST

Skip benchmark initialization and cleanup

Mark code with ROl begin / end markers

— SimRoiStart() / SimRoiEnd() in your own
application

—$ ./run-sniper --roi -- test/fft/fft

Already done in benchmarks distribution

— benchmarks/run-sniper implies --roi

— Use --no-roi to override

Cache warming during pre-ROI period
— Use --no-cache-warming to override
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CONFIGURATION

e Stackable configuration files (run-sniper -c)

and explicit command-line options (-g)
— Template configurations in sniper/config/*.cfg (-c name)
— Your own local configuration files (-c filename.cfg)
— Explicit option: -g --section/key=value
Multiple configuration files, and -g options, can be combined
— Config files specified later on the command line take precedence
— config/base.cfg is always included
— If no -c option is provided, config/gainestown.cfg is the default

(quad-core Nehalem-based Xeon)

Complete configuration is stored in sim.cfg after each run
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CONFIGURATION

 Example configuration: largecache.cfg

[perf model/13 cache]
cache _size = 16384 # KB

$ run-sniper -c gainestown -c largecache.cfg

e Equivalent to:

$ run-sniper -c gainestown \
-g --perfmodel/13 cache/cache _size=16384
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SIMULATION RESULTS

* Files created after each simulation:

— sim.cfg: all configuration options used for this run
(includes defaults, all -c and -g options)

— sim.out: basic statistics (number of cycles, instructions
per core, cache access and miss rates, ...)

— sim.stats: complete set of all recorded statistics at key
points in the simulation (start, roi-begin, roi-end, stop)

* Use the sniper_lib Python package for parsing
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SIMULATION RESULTS

sniper_lib.get results() parses sim.cfg, sim.stats and
returns configuration and statistics
(roi-end — roi-begin) for all cores

~/sniper/tools$ python

> import sniper_1lib

> results = sniper_lib.get results(resultsdir = €..”)

> print results

{‘config’: {‘general/total cores’: ‘64°’,
‘perf_model/core/frequency’: 2.66°, ..},

‘results’: {‘performance_model.instruction count’:[123],
‘performance model.elapsed time’: [23000000], ..}}
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SIMULATION RESULTS

e Let’'s compute the IPC for core O

e Core frequency is variable (DVFS)
so cycle count has to be computed

— Time is in femtoseconds, frequency in GHz

> instrs = results[ ‘results’]
[ ‘performance_model.instruction _count’][0]
> cycles = results[ ‘results’]

[ ‘performance_model.elapsed time’ ][9]
* float(results[ ‘config’ ][ ‘perf_model/core/frequency’])
* le-6 # femtoseconds -> nanoseconds
> ipc = instrs / cycles
2.0
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SIMULATION RESULTS

e CPI stacks (user of sniper_lib)

$ ./tools/cpistack.py

Core ©
depend-int
depend-fp
branch
ifetch
mem-11d
mem-13
mem-dram
sync-mutex
sync-cond
other

total

Core 1
depend-int
depend-fp
branch
mem-11d
mem-13
sync-mutex
sync-cond
other

total

OO0 OOOO0C () OO0 OO0

[}

CPI

.20
.16
.12
.04
.21
.02
.05
.02
.03
.01

.84

.20
.16
.12
.20
.06
.04
.05
.02

.85

CPI %

23

4

O WNUN

100

.42%
18.
14.

94%
04%

.16%
24.
.72%
.73%
.59%
.01%
.97%

41%

.00%

.92%
.79%
.72%
.06%
.79%
.22%
.60%
.89%

.00%

[--time|--cpi|--abstime]

Time %

23

4

O WwWN UN

L42%
18.
14.

94%
04%

.16%
24.
.72%
.73%
.59%
.01%
.97%

41%

.00s

.92%
.79%
.72%
.06%
.79%
.22%
.60%
.89%

.00s

Percent of time

100%

80%

60%

40%

20%

0%

SPLASH-2 - FFT

2 3 4 5
Thread number

6

7

I IR LT A LA

sync-barrier
sync-crit_sect
mem-dram
mem-off_socket
mem-I3
mem-12_neighbor
mem-12
mem-I1_neighbor
mem-l1d

ifetch

branch
depend-fp
depend-int
dispatch_width

92



@ \ ~
- :
INTERACTING WITH SNIPER

input/
binary cmdline configuration

application

SimAPI

<€

Python
scripts
Sniper simulator

statistics

|

cpi-stacks
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SIMAPI IMPLEMENTATION

* Magic instructions allow the application to talk to
the simulator directly

__asm____ volatile (
"xchg %%bx, %%sbx\n"
"=a" (_res) /* output */
: "a" (_cmd),
"b" (_argo),
"c" (_argl) /* input */
); /* clobbered */

* Pinintercepts this instruction and passes control
to the simulator

e Command and arguments passed through
rax/rbx/rcx registers, result in rax
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APPLICATION SIMAPI

e Calling simulator API functions from your C program
#include <sim_api.h>
— SimInSimulator()

* Return 1 when running inside Sniper, 0 when running natively

— SimGetProcld()

e Return processor number of caller
— SimRoiStart() / SimRoiEnd()
 Start/end detailed mode (when using ./run-sniper --roi)
— SimSetFreqMHz(proc, mhz) / SimGetFreqMHz(proc)
» Set / get processor frequency (integer, in MHz)

— SimUser(cmd, arg)

* User-defined function o



PYTHON SCRIPTING

Scripts are run on simulator startup

— Register hooks: callbacks when certain events
happen during the simulation

— See common/system/hooks manager.h for all
available hooks

Use an existing script from sniper/scripts/*.py:

./run-sniper -s scriptname

Or your own script:
./run-sniper -s myscriptname.py

Use sim package for convenience wrappers
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PYTHON SCRIPTING

* Low-level script
* Execute “foo” at each barrier synchronization

import sim_hooks
def foo(t):

print ‘The time is now’, t
sim_hooks.register(sim_hooks.HOOK PERIODIC, foo0)

97



PYTHON SCRIPTING

* Higher-level script
* Execute “foo” at each barrier synchronization

import sim
class Class:
def hook periodic(self, t):
print ‘The time is now’, t
sim.util.register(Class())
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PYTHON SCRIPTING

* High-level script: execute “foo” every X ms
* Pass in parameter using
./run-sniper -s myscript.py:X

import sim
class Class:
def setup(self, args):
sim.util.Every(long(args)*sim.util.Time.MS,
self.periodic)
def periodic(self, t, t delta):
print ‘The time 1is now’, t
print ‘Elapsed time since last call’, t_delta
sim.util.register(Class())
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PYTHON SCRIPTING

* Access configuration, statistics, DVFS

* Live periodic IPC trace:
— See scripts/ipctrace.py for a more complete example

class IPCTracer:

def setup(self, args):
sim.util.Every(1*sim.util.Time.US, self.periodic)
self.instrs prev = 0

def periodic(self, t, t delta):
freq = sim.dvfs.get frequency(0)
cycles = t delta * freq * 1le-9 # fs * MHz -> cycles
instrs = long(sim.stats.get(‘performance _model’, 0,

‘instruction_count’))

print ‘IPC =’, (instrs - self.instrs prev) / cycles

self.instrs prev = instrs 100
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PYTHON & MAGIC INSTRUCTIONS

e Communicate information between application
and Python script

— E.g.: simulated hardware performance counters
* Application:
uint64 _t ninstrs = SimUtil(©@xdeadbeef, SimGetProcId())

* Python script:
class PerfCtr:
def setup(self):
sim.util.register command(@xdeadbeef, self.compute)
def compute(self, arg):
return sim.stats.get( ‘performance _model’, arg,

‘instruction_count’)
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NEAR TERM IDEAS

Multiple processes
— Multiple multi-threaded applications, MPI support

Heterogeneous cores at run-time
— Big: 4-issue processor

— Small: 2-issue processor

— Now supported in Sniper v3.0
Scheduling/Migration support
Power modeling (McPAT)

Multiple processor configurations

— Currently the simulator is compiled to support a single
type of processor (Core2 vs. Nehalem vs. Sandy Bridge)
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SNIPER DEMO

Downloading
Compiling
Running a demo application

Evaluating Performance
— CPI Stacks

Configuration and Run-time Modifications
— Configuration files

— Python scripting

— ROI markers and Magic instructions
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